数据包络分析
缺少数据
计算机科学
数据挖掘
数据集
集合(抽象数据类型)
统计
运筹学
数学
人工智能
机器学习
程序设计语言
标识
DOI:10.1057/jors.2008.132
摘要
A first systematic attempt to use data containing missing values in data envelopment analysis (DEA) is presented. It is formally shown that allowing missing values into the data set can only improve estimation of the best-practice frontier. Technically, DEA can automatically exclude the missing data from the analysis if blank data entries are coded by appropriate numerical values.
科研通智能强力驱动
Strongly Powered by AbleSci AI