Optimal Taxes on Fossil Fuel in General Equilibrium

经济 碳排放税 贴现 动态随机一般均衡 最优税收 计量经济学 外部性 折旧(经济) 一般均衡理论 气候变化 化石燃料 自然资源经济学 微观经济学 货币经济学 化学 生态学 利润(经济学) 货币政策 资本形成 财务 有机化学 金融资本 生物
作者
Mikhail Golosov,John Hassler,Per Krusell,Aleh Tsyvinski
出处
期刊:Econometrica [Wiley]
卷期号:82 (1): 41-88 被引量:695
标识
DOI:10.3982/ecta10217
摘要

EconometricaVolume 82, Issue 1 p. 41-88 Optimal Taxes on Fossil Fuel in General Equilibrium Mikhail Golosov, Mikhail Golosov Dept. of Economics, Princeton University, 111 Fisher Hall, Princeton, NJ 08544, U.S.A.; [email protected]Search for more papers by this authorJohn Hassler, John Hassler IIES, Stockholm University, SE-106 91, Stockholm, Sweden; [email protected]Search for more papers by this authorPer Krusell, Per Krusell IIES, Stockholm University, SE-106 91, Stockholm, Sweden; [email protected]Search for more papers by this authorAleh Tsyvinski, Aleh Tsyvinski Dept. of Economics, Yale, 28 Hillhouse Avenue, New Haven, CT 06511, U.S.A.; [email protected] We thank Lint Barrage, Jiali Cheng, Bill Nordhaus, Jonas Nycander, Tony Smith, Sjak Smulders, and seminar participants at ESSIM, EIEF, EUI, IIES, Mistra-SWECIA, Yale, UCL, CREI, the Environmental Macro Conference at ASU, the EEA Annual Meeting (Glasgow), Fudan University (Shanghai), the Chinese University of Hong Kong, Beijing University, Bonn, Zurich, Carlos III, REDg DGEM (Barcelona), Oxford, Princeton, and Stanford. Golosov and Tsyvinski thank NSF for support and EIEF for their hospitality; Krusell thanks ERC and Mistra-SWECIA for support, and Hassler thanks Mistra-SWECIA and the Swedish Research Council for support.Search for more papers by this author Mikhail Golosov, Mikhail Golosov Dept. of Economics, Princeton University, 111 Fisher Hall, Princeton, NJ 08544, U.S.A.; [email protected]Search for more papers by this authorJohn Hassler, John Hassler IIES, Stockholm University, SE-106 91, Stockholm, Sweden; [email protected]Search for more papers by this authorPer Krusell, Per Krusell IIES, Stockholm University, SE-106 91, Stockholm, Sweden; [email protected]Search for more papers by this authorAleh Tsyvinski, Aleh Tsyvinski Dept. of Economics, Yale, 28 Hillhouse Avenue, New Haven, CT 06511, U.S.A.; [email protected] We thank Lint Barrage, Jiali Cheng, Bill Nordhaus, Jonas Nycander, Tony Smith, Sjak Smulders, and seminar participants at ESSIM, EIEF, EUI, IIES, Mistra-SWECIA, Yale, UCL, CREI, the Environmental Macro Conference at ASU, the EEA Annual Meeting (Glasgow), Fudan University (Shanghai), the Chinese University of Hong Kong, Beijing University, Bonn, Zurich, Carlos III, REDg DGEM (Barcelona), Oxford, Princeton, and Stanford. Golosov and Tsyvinski thank NSF for support and EIEF for their hospitality; Krusell thanks ERC and Mistra-SWECIA for support, and Hassler thanks Mistra-SWECIA and the Swedish Research Council for support.Search for more papers by this author First published: 05 February 2014 https://doi.org/10.3982/ECTA10217Citations: 382 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We analyze a dynamic stochastic general-equilibrium (DSGE) model with an externality—through climate change—from using fossil energy. Our central result is a simple formula for the marginal externality damage of emissions (or, equivalently, for the optimal carbon tax). This formula, which holds under quite plausible assumptions, reveals that the damage is proportional to current GDP, with the proportion depending only on three factors: (i) discounting, (ii) the expected damage elasticity (how many percent of the output flow is lost from an extra unit of carbon in the atmosphere), and (iii) the structure of carbon depreciation in the atmosphere. Thus, the stochastic values of future output, consumption, and the atmospheric CO2 concentration, as well as the paths of technology (whether endogenous or exogenous) and population, and so on, all disappear from the formula. We find that the optimal tax should be a bit higher than the median, or most well-known, estimates in the literature. We also formulate a parsimonious yet comprehensive and easily solved model allowing us to compute the optimal and market paths for the use of different sources of energy and the corresponding climate change. We find coal—rather than oil—to be the main threat to economic welfare, largely due to its abundance. We also find that the costs of inaction are particularly sensitive to the assumptions regarding the substitutability of different energy sources and technological progress. References Acemoglu, D. (2009): Introduction to Modern Economic Growth. Princeton , NJ : Princeton University Press. Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012): “The Environment and Directed Technical Change,” American Economic Review, 102 (1), 131–166. DOI: 10.1257/aer.102.1.131 Allen, M., D. Frame, C. Huntingford, C. Jones, J. Lowe, M. Meinshausen, and N. Meinshausen (2009): “Warming Caused by Cumulative Carbon Emissions Towards the Trillionth Tonne,” Nature, 458, 1163–1166. DOI: 10.1038/nature08019 Amigues, J.-P., G. Lafforgue, and M. Moreaux (2012): “ Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions,” Working Paper 12-318, Toulouse School of Economics . Angeletos, M. (2007): “Uninsured Idiosyncratic Investment Risk and Aggregate Saving,” Review of Economic Dynamics, 10 (1), 1–30. DOI: 10.1016/j.red.2006.11.001 Angeletos, M., and L. Calvet (2006): “Idiosyncratic Production Risk, Growth and the Business Cycle,” Journal of Monetary Economics, 53 (6), 1095–1115. DOI: 10.1016/j.jmoneco.2005.05.016 Archer, D. (2005): “The Fate of Fossil Fuel CO2 in Geologic Time,” Journal of Geophysical Research, 110, C09S05. DOI: 10.1029/2004JC002625 Archer, D., M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, and K. Tokos (2009): “Atmospheric Lifetime of Fossil Fuel Carbon Dioxide,” Annual Review of Earth and Planetary Sciences, 37, 117–134. DOI: 10.1146/annurev.earth.031208.100206 Barrage, L. (2014): “ Sensitivity Analysis for Golosov, Hassler, Krusell, and Tsyvinski (2014): ‘Optimal Taxes on Fossil Fuel in General Equilibrium’,” Econometrica Supplemental Material, 82, http://www.econometricsociety.org/ecta/supmat/10217_extensions.pdf. Bovenberg, L., and S. Smulders (1995): “Environmental Quality and Pollution-Augmenting Technological Change in a Two-Sector Endogenous Growth Model,” Journal of Public Economics, 57, 369–391. DOI: 10.1016/0047-2727(95)80002-Q Bovenberg, L., and S. Smulders (1996): “Transitional Impacts of Environmental Policy in an Endogenous Growth Model,” International Economic Review, 37 (4), 861–893. DOI: 10.2307/2527315 BP (2010): “ BP Statistical Review of World Energy,” June, available at http://bp.com/statisticalreview. Clarke, L., J. Edmonds, V. Krey, R. Richels, S. Rose, and M. Tavoni (2009): “International Climate Policy Architectures: Overview of the EMF 22 International Scenarios,” Energy Economics, 31, S64–S81. DOI: 10.1016/j.eneco.2009.10.013 Covas, F. (2006): “Uninsured Idiosyncratic Production Risk With Borrowing Constraints,” Journal of Economic Dynamics and Control, 30 (11), 2167–2190. DOI: 10.1016/j.jedc.2005.06.012 Dasgupta, P., and G. Heal (1974): “The Optimal Depletion of Exhaustable Resources,” Review of Economic Studies, 41, 3–28. DOI: 10.2307/2296369 Eyckmans, J., and H. Tulkens (2003): “Simulating Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem,” Resource and Energy Economics, 25, 299–327. DOI: 10.1016/S0928-7655(03)00041-1 Gars, J., and J. Hieronymus (2012): “ The Marine Carbon Cycle in an Integrated Assessment Model,” Report, Stockholm University . Gars, J., M. Golosov, and A. Tsyvinski (2009): “ Carbon Taxing and Alternative Energy,” Report, Yale University . Gerlagh, R. (2006): “ITC in a Global Growth-Climate Model With CCS: The Value of Induced Technical Change for Climate Stabilization,” The Energy Journal, 27 (Special I), 223–240. Gerlagh, R., and M. Liski (2012): “ Carbon Prices for the Next Thousand Years,” Working Paper 3855, CESifo . Goulder, L., and K. Mathai (2000): “Optimal CO2 Abatement in the Presence of Induced Technological Change,” Journal of Environmental Economics and Management, 39, 1–38. DOI: 10.1006/jeem.1999.1089 Grimaud, A., G. Lafforgue, and B. Magné (2011): “Climate Change Mitigation Options and Directed Technical Change: A Decentralized Equilibrium Analysis,” Resource and Energy Economics, 33 (4), 938–962. DOI: 10.1016/j.reseneeco.2010.11.003 Hassler, J., P. Krusell, and C. Olovsson (2012): “ Energy-Saving Technical Change,” Working Paper 18456, NBER. Herfindahl, O. (1967): “ Depletion and Economic Theory,” in Extractive Resources and Taxation, ed. by M. Gaffney. Madison , WI : University of Wisconsin Press. Hoel, M. (2009): “ Climate Change and Carbon Tax Expectations,” Working Paper 2966, CESifo . Hope, C. W. (2008): “Discount Rates, Equity Weights and the Social Cost of Carbon,” Energy Economics, 30 (3), 1011–1019. DOI: 10.1016/j.eneco.2006.11.006 Hotelling, H. (1931): “The Economics of Exhaustible Resources,” Journal of Political Economy, 39 (2), 137–175. DOI: 10.1086/254195 IEA (International Energy Agency) (2010): “ World Energy Outlook,” OECD/IEA Paris . IPCC (Intergovernmental Panelon Climate Change) (2006): “ Guidelines for National Greenhouse Gas Inventories, Vol. 2 Energy,” IPCC . Iverson, T. (2012): “ Optimal Carbon Taxes With Non-Constant Time Preference,” Working Paper. Jorgenson, D., R. Goettle, M. Ho, and P. Wilcoxen (2008): “ The Economic Costs of a Market-Based Climate Policy,” Working Paper, Pew Center on Global Climate Change . Karp, L. (2005): “Global Warming and Hyperbolic Discounting,” Journal of Public Economics, 89, 261–282. DOI: 10.1016/j.jpubeco.2004.02.005 Kelly, D., and C. Kolstad (1999): “Bayesian Learning, Growth, and Pollution,” Journal of Economic Dynamics and Control, 23 (4), 491–518. DOI: 10.1016/S0165-1889(98)00034-7 Kemp, M., and N. Van Long (1980): “On Two Folk Theorems Concerning the Extraction of Exhaustible Resources,” Econometrica, 48 (3), 663–673. DOI: 10.2307/1913129 Krusell, P., and A. Smith (1998): “Income and Wealth Heterogeneity in the Macroeconomy,” Journal of Political Economy, 106, 867–896. DOI: 10.1086/250034 Krusell, P., and A. Smith (2006): “ Quantitative Macroeconomic Models With Heterogeneous Agents,” in Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress. Econometric Society Monographs, Vol. 41, ed. by R. Blundell, W. Newey, and T. Persson. Skatteverket : Cambridge University Press, 298–340. DOI: 10.1017/CCOL0521871522.008 Krusell, P., and A. Smith (2009): “ Macroeconomics and Global Climate Change: Transition for a Many-Region Economy,” Working Paper. Leach, A. (2007): “The Welfare Implications of Climate Change Policy,” Journal of Economic Dynamics and Control, 57, 151–165. McKibbin, W., and P. Wilcoxen (1999): “The Theoretical and Empirical Structure of the G-Cubed Model,” Economic Modelling, 16 (1), 123–148. DOI: 10.1016/S0264-9993(98)00035-2 Mendelsohn, R., W. Nordhaus, and D. G. Shaw (1994): “The Impact of Global Warming on Agriculture: A Ricardian Approach,” American Economic Review, 84 (4), 753–771. Nordhaus, W. (2007): “To Tax or Not to Tax: The Case for a Carbon Tax,” Review of Environmental Economics and Policy, 1 (1), 26–44. DOI: 10.1093/reep/rem008 Nordhaus, W. (2008): A Question of Balance: Weighing the Options on Global Warming Policies. New Haven , CT : Yale University Press. Nordhaus, W., and J. Boyer (2000): Warming the World: Economic Modeling of Global Warming. Cambridge , MA : MIT Press. Pizer, W. (1998): “The Optimal Choice of Climate Change Policy in the Presence of Uncertainty,” Resource and Energy Economics, 21, 255–287. DOI: 10.1016/S0928-7655(99)00005-6 Popp, D. (2006): “ENTICE-BR: The effects of Backstop Technology R&D on Climate Policy Models Energy Economics,” Energy Economics, 28 (2), 188–222. DOI: 10.1016/j.eneco.2005.10.004 Revelle, R., and H. Suess (1957): “Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 During Past Decades,” Tellus, 9, 18–27. DOI: 10.1111/j.2153-3490.1957.tb01849.x Roe, G., and M. Baker (2007): “Why Is Climate Sensitivity so Unpredictable? Science, 318 (5850), 629–632. DOI: 10.1126/science.1144735 Roe, G., and Y. Bauman (2011): “ Should the Climate Tail Wag the Policy Dog?” Report, University of Washington , Seattle . Rogner, H.-H. (1997): “An Assessment of World Hydrocarbon Resources,” Annual Review of Energy and the Environment, 22, 217–262. DOI: 10.1146/annurev.energy.22.1.217 Romer, P. (1986): “Increasing Returns and Long-Run Growth,” Journal of Political Economy, 94 (5), 1002–1037. DOI: 10.1086/261420 Saint-Paul, G. (2002): “ Environmental Policy and Directed Innovation in a Schumpeterian Growth Model,” Working Paper. Saint-Paul, G. (2007): “ Quels instruments pour une politique environnementale?” Working Paper. Schwartz, S., R. Charlson, R. Kahn, J. Ogren, and H. Rodhe (2010): “Why Hasn't Earth Warmed as Much as Expected? Journal of Climate, 23, 2453–2464. DOI: 10.1175/2009JCLI3461.1 Sinclair, P. (1992): “High Does Nothing and Raising Is Worse: Carbon Taxes Should Be Kept Declining to Cut Harmful Emissions,” Manchester School, 60, 41–52. DOI: 10.1111/j.1467-9957.1992.tb00209.x Sinn, H.-W. (2008): “Public Policies Against Global Warming: A Supply Side Approach,” International Tax and Public Finance, 15 (4), 360–394. DOI: 10.1007/s10797-008-9082-z Stern, D. I. (2012): “Interfuel Substitution: A Meta-Analysis,” Journal of Economic Surveys, 26, 307–331. DOI: 10.1111/j.1467-6419.2010.00646.x Stern, N. (2007): The Economics of Climate Change: The Stern Review. Cambridge , U.K. : Cambridge University Press. Sterner, T., and M. Persson (2008): “An Even Sterner Review: Introducing Relative Prices Into the Discounting Debate,” Review Environmental Economics and Policy, 2 (1), 61–76. DOI: 10.1093/reep/rem024 Stiglitz, J. (1974): “Growth With Exhaustible Natural Resources: Efficient and Optimal Growth Paths,” Review of Economic Studies, 41, 123–137. DOI: 10.2307/2296377 Swedish Tax Agency (2010): “ Skatter i Sverige—Skattestatistisk Årsbok 2010” (in Swedish), available at http://www.skatteverket.se. Tahvonen, O. (1997): “Fossil Fuels, Stock Externalities, and Backstop Technology,” Canadian Journal of Economics, 30 (4a), 855–874. DOI: 10.2307/136274 Tol, R. (1997): “On the Optimal Control of Carbon Dioxide Emissions: An Application of FUND,” Environmental Modeling and Assessment, 2, 151–163. Uzawa, H. (2003): Economic Theory and Global Warming, Cambridge : Cambridge University Press. Van der Ploeg, F., and C. Withagen (2010): “ Is There Really a Green Paradox?” Working Paper 2963, CESifo . Van der Ploeg, F., and C. Withagen (2012): “Too Much Coal, Too Little Oil,” Journal of Public Economics, 96 (1–2), 62–77. Van der Ploeg, F., and C. Withagen (2014): “Growth, Renewables and the Optimal Carbon Tax,” International Economic Review (forthcoming). Van der Zwaan, B. and R. Gerlagh (2009): “Economics of Geological CO2 Storage and Leakage,” Climate Change, 93, 285–309. Weitzman, M. (2009): “On Modeling and Interpreting the Economics of Catastrophic Climate Change,” Review of Economics and Statistics, 91, 1–19. DOI: 10.1162/rest.91.1.1 Weyant, J. (2000): “ An Introduction to the Economics of Climate Change,” prepared for the Pew Center on Global Climate Change, available at http://www.pewclimate.org/globalwarming-in-depth/all_reports/economics_of_climate_change. Weyant, J., O. Davidson, H. Dowlabathi, J. Edmonds, M. Grubb, E. A. Parson, and S. Fankhauser (1996): “ Integrated Assessment of Climate Change: An Overview and Comparison of Approaches and Results,” in Climate Change 1995. Economic and Social Dimensions of Climate Change: Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, ed. by J. Bruce, H. P. Lee, and E. F. Haites. Cambridge : Cambridge University Press. Withagen, C. (1994): “Pollution and Exhaustibility of Fossil Fuels,” Resource and Energy Economics, 16, 235–242. DOI: 10.1016/0928-7655(94)90007-8 Citing Literature Volume82, Issue1January 2014Pages 41-88 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐续完成签到 ,获得积分10
3秒前
fatcat完成签到,获得积分10
7秒前
一行白鹭上青天完成签到 ,获得积分10
7秒前
13秒前
又是一年完成签到,获得积分10
13秒前
飘文献完成签到,获得积分0
14秒前
和科研不太熟完成签到 ,获得积分10
17秒前
chenlichan完成签到,获得积分10
17秒前
zhaoyaoshi完成签到 ,获得积分10
17秒前
17秒前
十点差一分完成签到 ,获得积分10
19秒前
咖啡味椰果完成签到 ,获得积分10
20秒前
深情芷发布了新的文献求助10
22秒前
Zephyr完成签到,获得积分10
23秒前
25秒前
lcxszsd完成签到 ,获得积分10
29秒前
木野狐发布了新的文献求助10
29秒前
忧伤的南莲完成签到,获得积分10
30秒前
凌兰完成签到 ,获得积分10
30秒前
欧阳枫完成签到 ,获得积分10
30秒前
yuki完成签到,获得积分10
30秒前
月亮与六便士完成签到 ,获得积分10
32秒前
33秒前
孤独雨梅完成签到,获得积分10
36秒前
HQ完成签到,获得积分10
36秒前
ysssbq完成签到,获得积分10
37秒前
深情芷发布了新的文献求助10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
Ava应助科研通管家采纳,获得10
39秒前
CyrusSo524应助科研通管家采纳,获得10
39秒前
丘比特应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
852应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
ludong_0应助科研通管家采纳,获得10
40秒前
Orange应助科研通管家采纳,获得10
40秒前
llllzzh完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268