亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Proteomics: An Overview

蛋白质组学 人类蛋白质组计划 基因组学 蛋白质组 计算生物学 人类疾病 生物信息学 生物 计算机科学 数据科学 遗传学 基因组 基因
作者
Ian C. Lawrance,Borut Klopcic,Valerie C. Wasinger
出处
期刊:Inflammatory Bowel Diseases [Oxford University Press]
卷期号:11 (10): 927-936 被引量:17
标识
DOI:10.1097/01.mib.0000178264.41722.0f
摘要

WHAT DOES IT MEAN?The application of genomics has established a firm foundation for research into both human health and disease, and the development of proteomics was the next logical step, but what exactly is proteomics?The term proteomics was first coined in 1995 from a combination of ''protein'' and ''genomics,'' but it was far earlier in 1979 that the concept to fully characterize the human proteome was first proposed by Norman G. Anderson and N. Leigh Anderson in a submission entitled the ''Human Proteins Index Project.'' 1 At that time it was hoped that, by using the newly developed technique of 2-dimensional gel electrophoresis (2D-PAGE), the genome would be unlocked through the proteins identified.Since then, like most things in the field of science, the understanding of proteomics has evolved.The term proteomics now encompasses the concept of completeness, the idea that all proteins should be identified and studied.Already 1 study that fully incorporates this concept of completeness is that by the Protein Structure Initiative of the National Institutes of General Medical Sciences (NIGMS).Its aim is to generate a comprehensive database of all protein structures found in nature (http://www.nigms.nih.gov).This aim, however, is beyond the scope and ability of all but the largest scientific consortiums, and so the logical progression from generic protein identification for most researchers is the analysis of those proteins present within a chosen tissue, or cell population, with the aim of developing pattern recognition of the proteins expressed.Any differences observed in protein expression between different tissues can be examined, and groups or individual proteins examined in greater detail.Such a technique could allow for the characterization of specific protein markers of inflammation that are differentially expressed between inflamed and noninflamed intestinal tissue, and perhaps the identification of cellular markers of malignant change.Because of the huge number of proteins expressed in any 1 tissue, such wide-ranging profiling would primarily use high-throughput technologies to characterize the changes.These findings, however, are merely a snap shot of the protein levels at a single moment in time, and determination of changes in protein expression and location over time would engender greater information.Whether researchers aim to compare a proteomic snapshot of health with diseased states or characterize the changes observed over time under specific environmental conditions, protein expression profiles can be mapped.As more tissues are studied under more conditions, more and more changes will be identified.As more is known, the complexity of the protein patterning will ever increase, and thus use of bioinformatics and the techniques of computational simulation and modeling are vital to amalgamate the information into a coherent larger picture.Despite the vastness of the above concept of proteomics, however, its functional definition is still limited.A more inclusive definition is still desirable, because the understanding of proteins needs to extend far beyond merely the identification of protein expression profiles.To this purpose, the definition of proteomics should be expanded to represent ''the effort to establish the identities, quantities, structures, and biochemical and cellular functions of all proteins in an organism, organ, or organelle, and how these properties vary in space, time, or physiological state.'' 2Because the structure and function of proteins are not fixed, but vary over time and are dependent on the tissue microenvironment, proteomics needs to come to grips with protein modification, protein variants, and protein isoforms.This unfortunately magnifies the task dramatically.The simplest scenario of the proteome assumes that only 1 protein is encoded from every gene locus, with an estimated 20 to 25,000 nonredundant proteins encoded by the human genome.Genetic diversity of proteins from separate individuals, however, is a factor that results in amino acid variability and, as it occurs in greater than 1% of the population, 3 would increase

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的山蝶完成签到 ,获得积分10
1秒前
6秒前
英俊的铭应助自觉的人龙采纳,获得10
6秒前
7秒前
yueying完成签到,获得积分10
8秒前
10秒前
10秒前
kentonchow应助微笑睫毛采纳,获得10
10秒前
11秒前
11秒前
Celeste发布了新的文献求助10
12秒前
xu完成签到,获得积分10
13秒前
kentonchow应助小解采纳,获得10
13秒前
Shawn发布了新的文献求助10
15秒前
ho应助科研通管家采纳,获得10
18秒前
ho应助科研通管家采纳,获得10
18秒前
18秒前
Celeste发布了新的文献求助10
43秒前
Akim应助Candices采纳,获得10
48秒前
55秒前
Pikaluo发布了新的文献求助10
58秒前
今后应助Celeste采纳,获得10
1分钟前
Candices完成签到,获得积分10
1分钟前
细心八宝粥完成签到 ,获得积分10
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
lllllllllzx完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助200
1分钟前
Pikaluo完成签到,获得积分10
1分钟前
希望天下0贩的0应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
顺颂时祺发布了新的文献求助10
1分钟前
1分钟前
2分钟前
FG发布了新的文献求助10
2分钟前
2分钟前
2分钟前
tt完成签到,获得积分20
2分钟前
tt发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827