翼型
雷诺数
Lift(数据挖掘)
机械
升力系数
物理
攻角
旋涡脱落
升阻比
振幅
雷诺平均Navier-Stokes方程
空气动力学
经典力学
数学
计算流体力学
计算机科学
湍流
光学
数据挖掘
作者
David Cleaver,Zhijin Wang,Ismet Gursul,Miguel R. Visbal
出处
期刊:AIAA Journal
[American Institute of Aeronautics and Astronautics]
日期:2011-09-01
卷期号:49 (9): 2018-2033
被引量:97
摘要
Force and particle image velocimetry measurements were conducted on a NACA 0012 airfoil undergoing small-amplitude sinusoidal plunge oscillations at a poststall angle of attack and Reynolds number of 10,000. With increasing frequency of oscillation, lift increases and drag decreases due to the leading-edge vortices shed and convected over the suction surface of the airfoil. Within this regime, the lift coefficient increases approximately linearly with the normalized plunge velocity. Local maxima occur in the lift coefficient due to the resonance with the most unstable wake frequency, its subharmonic and first harmonic, producing the most efficient conditions for high-lift generation. At higher frequencies, a second mode of flowfield occurs. The leading-edge vortex remains nearer the leading edge of the airfoil and loses its coherency through impingement with the upward-moving airfoil. To capture this impingement process, high-fidelity computational simulations were performed that showed the highly transitional nature of the flow and a strong interaction between the upper and lower-surface vortices. A sudden loss of lift may also occur at high frequencies for larger amplitudes in this mode.
科研通智能强力驱动
Strongly Powered by AbleSci AI