CRACKING OF GaN FILMS

材料科学 开裂 蓝宝石 脆性 聚结(物理) 复合材料 基质(水族馆) 外延 极限抗拉强度 断裂力学 强度因子 断裂(地质) 压力(语言学) 位错 光学 激光器 图层(电子) 地质学 物理 哲学 海洋学 天体生物学 语言学
作者
E. V. Etzkorn,David Clarke
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:14 (01): 63-81 被引量:3
标识
DOI:10.1142/s0129156404002247
摘要

The cracking of GaN films and the associated cracking of substrates are described. The geometry, structure, and evolution of fracture demonstrate that GaN films crack under tensile stress during growth and are subsequently overgrown and partially healed. The film cracks channel along the (1010) GaN planes and also extend a distance of ~5 μm into the sapphire substrate. These incipient cracks in the substrate form a set of initial flaws that leads to complete fracture through the sapphire during cooling for sufficiently thick films. Each stage of this cracking behavior is well described by a fracture mechanics model that delineates a series of critical thicknesses for the onset of cracking that are functions of the film and substrate stresses, thicknesses, and elastic properties. Similar cracking behavior is found to occur independently of the choice of substrate between sapphire and SiC and is traced to a tensile stress generation mechanism early in the growth process, such as that provided by island coalescence. Cracking is the dominant stress relief mechanism, as opposed to dislocation generation or diffusion, because of the island growth mode and because of optimized growth temperatures at or below the brittle-to-ductile transition. Lateral epitaxial overgrowth (LEO) of GaN is shown to minimize substrate fracture even though film cracking remains unaffected. This effect explained in terms of the limits placed on the initial extent of insipient substrate cracks due to the LEO geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KK发布了新的文献求助30
刚刚
娃娃完成签到 ,获得积分20
刚刚
科研通AI5应助结实的冰真采纳,获得30
刚刚
冷静的小熊猫完成签到,获得积分10
1秒前
Donnie完成签到,获得积分10
1秒前
若尘完成签到,获得积分10
2秒前
椰子完成签到 ,获得积分10
2秒前
2秒前
细腻涵菱完成签到,获得积分10
3秒前
吕耀炜完成签到,获得积分10
3秒前
3秒前
3秒前
简称王完成签到 ,获得积分10
3秒前
蓝莓松饼完成签到,获得积分10
4秒前
一路高飛完成签到,获得积分10
4秒前
赘婿应助andyxrz采纳,获得10
4秒前
Zhang完成签到,获得积分10
4秒前
5秒前
年轻冥茗完成签到,获得积分10
5秒前
apple发布了新的文献求助10
6秒前
CarterXD完成签到,获得积分10
6秒前
紧张的友灵完成签到,获得积分10
6秒前
SciGPT应助之仔饼采纳,获得10
7秒前
liudiqiu应助追寻的易烟采纳,获得10
7秒前
Chem is try发布了新的文献求助10
7秒前
7秒前
vsoar完成签到,获得积分10
7秒前
8秒前
9秒前
GGGGGGGGGG发布了新的文献求助10
9秒前
9秒前
打打应助hhh采纳,获得10
10秒前
抓恐龙关注了科研通微信公众号
10秒前
碳点godfather完成签到,获得积分10
10秒前
ren完成签到,获得积分20
10秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
11秒前
TG_FY完成签到,获得积分10
11秒前
11秒前
hhh完成签到,获得积分10
11秒前
JamesPei应助诗轩采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672