CRACKING OF GaN FILMS

材料科学 开裂 蓝宝石 脆性 聚结(物理) 复合材料 基质(水族馆) 外延 极限抗拉强度 断裂力学 强度因子 断裂(地质) 压力(语言学) 位错 光学 激光器 图层(电子) 地质学 语言学 海洋学 物理 哲学 天体生物学
作者
E. V. Etzkorn,David Clarke
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:14 (01): 63-81 被引量:3
标识
DOI:10.1142/s0129156404002247
摘要

The cracking of GaN films and the associated cracking of substrates are described. The geometry, structure, and evolution of fracture demonstrate that GaN films crack under tensile stress during growth and are subsequently overgrown and partially healed. The film cracks channel along the (1010) GaN planes and also extend a distance of ~5 μm into the sapphire substrate. These incipient cracks in the substrate form a set of initial flaws that leads to complete fracture through the sapphire during cooling for sufficiently thick films. Each stage of this cracking behavior is well described by a fracture mechanics model that delineates a series of critical thicknesses for the onset of cracking that are functions of the film and substrate stresses, thicknesses, and elastic properties. Similar cracking behavior is found to occur independently of the choice of substrate between sapphire and SiC and is traced to a tensile stress generation mechanism early in the growth process, such as that provided by island coalescence. Cracking is the dominant stress relief mechanism, as opposed to dislocation generation or diffusion, because of the island growth mode and because of optimized growth temperatures at or below the brittle-to-ductile transition. Lateral epitaxial overgrowth (LEO) of GaN is shown to minimize substrate fracture even though film cracking remains unaffected. This effect explained in terms of the limits placed on the initial extent of insipient substrate cracks due to the LEO geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Wyett发布了新的文献求助10
2秒前
可爱铁身发布了新的文献求助30
2秒前
2秒前
4秒前
碧蓝映之完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
waayu发布了新的文献求助10
9秒前
Haixia完成签到,获得积分10
9秒前
noobmaster发布了新的文献求助10
11秒前
春风发布了新的文献求助10
11秒前
12秒前
Jasper应助健壮的访曼采纳,获得30
13秒前
大个应助waayu采纳,获得10
14秒前
可爱的函函应助Termin采纳,获得30
15秒前
深情安青应助外向的半芹采纳,获得10
17秒前
CodeCraft应助眼睛大鹤采纳,获得10
17秒前
BSDL发布了新的文献求助10
17秒前
CodeCraft应助可靠的香菇采纳,获得10
19秒前
坚强志泽完成签到 ,获得积分10
20秒前
热情凌青完成签到,获得积分10
21秒前
所所应助BSDL采纳,获得10
23秒前
23秒前
烟花应助春风采纳,获得10
25秒前
Jasper应助ZZZ采纳,获得10
27秒前
酷波er应助咩咩兔采纳,获得10
28秒前
热情的板栗完成签到,获得积分10
28秒前
大模型应助L112233采纳,获得10
33秒前
忧伤的代梅完成签到,获得积分10
34秒前
碧蓝映之关注了科研通微信公众号
35秒前
36秒前
末晶完成签到,获得积分10
37秒前
末晶发布了新的文献求助10
41秒前
Tr发布了新的文献求助10
41秒前
43秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469