不可见的
系列(地层学)
数学
白噪声
特征(语言学)
时间序列
算法
噪音(视频)
估计
数学优化
计算机科学
人工智能
统计
计量经济学
古生物学
生物
语言学
哲学
管理
经济
图像(数学)
出处
期刊:Biometrika
[Oxford University Press]
日期:2008-02-04
卷期号:95 (2): 365-379
被引量:118
标识
DOI:10.1093/biomet/asn009
摘要
We propose a new method for estimating common factors of multiple time series. One distinctive feature of the new approach is that it is applicable to some nonstationary time series. The unobservable, nonstationary factors are identified by expanding the white noise space step by step, thereby solving a high-dimensional optimization problem by several low-dimensional sub-problems. Asymptotic properties of the estimation are investigated. The proposed methodology is illustrated with both simulated and real datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI