卡尔曼滤波器
过采样
数学
李雅普诺夫方程
随机微分方程
控制理论(社会学)
离散时间和连续时间
离散化
李雅普诺夫函数
扩展卡尔曼滤波器
微分方程
常微分方程
Riccati方程
解算器
应用数学
计算机科学
非线性系统
数学优化
数学分析
带宽(计算)
人工智能
统计
物理
量子力学
计算机网络
控制(管理)
作者
Patrik Axelsson,Fredrik Gustafsson
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2015-03-01
卷期号:60 (3): 632-643
被引量:48
标识
DOI:10.1109/tac.2014.2353112
摘要
Prediction and filtering of continuous-time stochastic processes often require a solver of a continuous-time differential Lyapunov equation (CDLE), for example the time update in the Kalman filter. Even though this can be recast into an ordinary differential equation (ODE), where standard solvers can be applied, the dominating approach in Kalman filter applications is to discretize the system and then apply the discrete-time difference Lyapunov equation (DDLE). To avoid problems with stability and poor accuracy, oversampling is often used. This contribution analyzes over-sampling strategies, and proposes a novel low-complexity analytical solution that does not involve oversampling. The results are illustrated on Kalman filtering problems in both linear and nonlinear systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI