超单元
从头算
趋同(经济学)
钻石
从头算量子化学方法
电介质
静电学
统计物理学
边界(拓扑)
可靠性(半导体)
求和法
物理
带电粒子
周期边界条件
凝聚态物理
方案(数学)
计算物理学
边值问题
外推法
电子结构
工作(物理)
量子力学
作者
Christoph Freysoldt,Jörg Neugebauer,Chris G. Van de Walle
标识
DOI:10.1103/physrevlett.102.016402
摘要
In ab initio theory, defects are routinely modeled by supercells with periodic boundary conditions. Unfortunately, the supercell approximation introduces artificial interactions between charged defects. Despite numerous attempts, a general scheme to correct for these is not yet available. We propose a new and computationally efficient method that overcomes limitations of previous schemes and is based on a rigorous analysis of electrostatics in dielectric media. Its reliability and rapid convergence with respect to cell size is demonstrated for charged vacancies in diamond and GaAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI