核糖核酸
小核仁RNA
非编码RNA
Rna处理
生物
计算生物学
细胞生物学
化学
基因
遗传学
作者
Lauren Michelle Lui,Todd M. Lowe
出处
期刊:Essays in Biochemistry
[Portland Press]
日期:2013-04-23
卷期号:54: 53-77
被引量:72
摘要
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2′-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
科研通智能强力驱动
Strongly Powered by AbleSci AI