Error Metrics and the Sequential Refinement of Kriging Metamodels

元建模 克里金 计算机科学 重采样 工程设计过程 计算机实验 可靠性(半导体) 集合(抽象数据类型) 过程(计算) 数据挖掘 算法 机器学习 模拟 工程类 机械工程 功率(物理) 物理 操作系统 量子力学 程序设计语言
作者
David A. Romero,Veronica E. Marin,Cristina H. Amon
出处
期刊:Journal of Mechanical Design 卷期号:137 (1) 被引量:17
标识
DOI:10.1115/1.4028883
摘要

Metamodels, or surrogate models, have been proposed in the literature to reduce the resources (time/cost) invested in the design and optimization of engineering systems whose behavior is modeled using complex computer codes, in an area commonly known as simulation-based design optimization. Following the seminal paper of Sacks et al. (1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4(4), pp. 409–435), researchers have developed the field of design and analysis of computer experiments (DACE), focusing on different aspects of the problem such as experimental design, approximation methods, model fitting, model validation, and metamodeling-based optimization methods. Among these, model validation remains a key issue, as the reliability and trustworthiness of the results depend greatly on the quality of approximation of the metamodel. Typically, model validation involves calculating prediction errors of the metamodel using a data set different from the one used to build the model. Due to the high cost associated with computer experiments with simulation codes, validation approaches that do not require additional data points (samples) are preferable. However, it is documented that methods based on resampling, e.g., cross validation (CV), can exhibit oscillatory behavior during sequential/adaptive sampling and model refinement, thus making it difficult to quantify the approximation capabilities of the metamodels and/or to define rational stopping criteria for the metamodel refinement process. In this work, we present the results of a simulation experiment conducted to study the evolution of several error metrics during sequential model refinement, to estimate prediction errors, and to define proper stopping criteria without requiring additional samples beyond those used to build the metamodels. Our results show that it is possible to accurately estimate the predictive performance of Kriging metamodels without additional samples, and that leave-one-out CV errors perform poorly in this context. Based on our findings, we propose guidelines for choosing the sample size of computer experiments that use sequential/adaptive model refinement paradigm. We also propose a stopping criterion for sequential model refinement that does not require additional samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助Joy采纳,获得10
2秒前
现代CC完成签到 ,获得积分10
2秒前
甜美语芙发布了新的文献求助10
3秒前
轻松海云完成签到,获得积分10
4秒前
深情安青应助听寒采纳,获得10
5秒前
Guhann完成签到,获得积分10
6秒前
数学情缘发布了新的文献求助10
8秒前
xiaoshi完成签到,获得积分10
11秒前
11秒前
离魂完成签到,获得积分10
11秒前
12秒前
chenwen渊完成签到 ,获得积分10
12秒前
一枪入魂发布了新的文献求助10
13秒前
czz014完成签到,获得积分10
13秒前
赘婿应助璇儿采纳,获得10
14秒前
兔兔鑫发布了新的文献求助30
16秒前
数学情缘完成签到,获得积分10
16秒前
科研通AI2S应助念念采纳,获得10
17秒前
愤怒的乐松应助无无采纳,获得20
21秒前
Lucas应助l7采纳,获得10
21秒前
狗宅完成签到 ,获得积分10
22秒前
23秒前
25秒前
WDS完成签到 ,获得积分10
25秒前
在座的审稿都是俺爹完成签到,获得积分10
25秒前
25秒前
无无完成签到,获得积分20
28秒前
星辰大海应助科研通管家采纳,获得10
29秒前
29秒前
yar应助科研通管家采纳,获得10
29秒前
yar应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得30
29秒前
劲秉应助科研通管家采纳,获得10
29秒前
劲秉应助科研通管家采纳,获得10
29秒前
yar应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
丰知然应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304342
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488166
捐赠科研通 2612797
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374