Error Metrics and the Sequential Refinement of Kriging Metamodels

元建模 克里金 计算机科学 重采样 工程设计过程 计算机实验 可靠性(半导体) 集合(抽象数据类型) 过程(计算) 数据挖掘 算法 机器学习 模拟 工程类 机械工程 操作系统 物理 量子力学 功率(物理) 程序设计语言
作者
David A. Romero,Veronica E. Marin,Cristina H. Amon
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:137 (1) 被引量:17
标识
DOI:10.1115/1.4028883
摘要

Metamodels, or surrogate models, have been proposed in the literature to reduce the resources (time/cost) invested in the design and optimization of engineering systems whose behavior is modeled using complex computer codes, in an area commonly known as simulation-based design optimization. Following the seminal paper of Sacks et al. (1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4(4), pp. 409–435), researchers have developed the field of design and analysis of computer experiments (DACE), focusing on different aspects of the problem such as experimental design, approximation methods, model fitting, model validation, and metamodeling-based optimization methods. Among these, model validation remains a key issue, as the reliability and trustworthiness of the results depend greatly on the quality of approximation of the metamodel. Typically, model validation involves calculating prediction errors of the metamodel using a data set different from the one used to build the model. Due to the high cost associated with computer experiments with simulation codes, validation approaches that do not require additional data points (samples) are preferable. However, it is documented that methods based on resampling, e.g., cross validation (CV), can exhibit oscillatory behavior during sequential/adaptive sampling and model refinement, thus making it difficult to quantify the approximation capabilities of the metamodels and/or to define rational stopping criteria for the metamodel refinement process. In this work, we present the results of a simulation experiment conducted to study the evolution of several error metrics during sequential model refinement, to estimate prediction errors, and to define proper stopping criteria without requiring additional samples beyond those used to build the metamodels. Our results show that it is possible to accurately estimate the predictive performance of Kriging metamodels without additional samples, and that leave-one-out CV errors perform poorly in this context. Based on our findings, we propose guidelines for choosing the sample size of computer experiments that use sequential/adaptive model refinement paradigm. We also propose a stopping criterion for sequential model refinement that does not require additional samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐志豪完成签到,获得积分20
刚刚
刚刚
共享精神应助高骏伟采纳,获得10
刚刚
2秒前
3秒前
徐志豪发布了新的文献求助10
5秒前
nick完成签到,获得积分10
5秒前
5秒前
小宋发布了新的文献求助10
5秒前
6秒前
7秒前
天天快乐应助喜悦的怀梦采纳,获得10
8秒前
超级瑶瑶发布了新的文献求助10
8秒前
穆思柔完成签到,获得积分10
8秒前
QiranSheng发布了新的文献求助10
9秒前
何大春发布了新的文献求助10
9秒前
帅过吴彦祖完成签到,获得积分10
10秒前
zzyy完成签到,获得积分10
10秒前
现代rong完成签到,获得积分10
11秒前
高骏伟发布了新的文献求助10
11秒前
辛巴先生完成签到 ,获得积分10
11秒前
li完成签到 ,获得积分10
13秒前
hp完成签到,获得积分20
14秒前
有轨电车前的红绿灯完成签到,获得积分10
14秒前
14秒前
monere发布了新的文献求助10
14秒前
15秒前
15秒前
何大春完成签到,获得积分10
16秒前
16秒前
16秒前
MoMo发布了新的文献求助10
17秒前
17秒前
Rookie99完成签到,获得积分10
17秒前
17秒前
ustcliyang完成签到,获得积分10
18秒前
小雅子完成签到,获得积分10
19秒前
Cheecity发布了新的文献求助10
20秒前
科目三应助任小波666采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
translating meaning 500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4903950
求助须知:如何正确求助?哪些是违规求助? 4182306
关于积分的说明 12985134
捐赠科研通 3947927
什么是DOI,文献DOI怎么找? 2165321
邀请新用户注册赠送积分活动 1183731
关于科研通互助平台的介绍 1090149