Error Metrics and the Sequential Refinement of Kriging Metamodels

元建模 克里金 计算机科学 重采样 工程设计过程 计算机实验 可靠性(半导体) 集合(抽象数据类型) 过程(计算) 数据挖掘 算法 机器学习 模拟 工程类 机械工程 操作系统 物理 量子力学 功率(物理) 程序设计语言
作者
David A. Romero,Veronica E. Marin,Cristina H. Amon
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:137 (1) 被引量:17
标识
DOI:10.1115/1.4028883
摘要

Metamodels, or surrogate models, have been proposed in the literature to reduce the resources (time/cost) invested in the design and optimization of engineering systems whose behavior is modeled using complex computer codes, in an area commonly known as simulation-based design optimization. Following the seminal paper of Sacks et al. (1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4(4), pp. 409–435), researchers have developed the field of design and analysis of computer experiments (DACE), focusing on different aspects of the problem such as experimental design, approximation methods, model fitting, model validation, and metamodeling-based optimization methods. Among these, model validation remains a key issue, as the reliability and trustworthiness of the results depend greatly on the quality of approximation of the metamodel. Typically, model validation involves calculating prediction errors of the metamodel using a data set different from the one used to build the model. Due to the high cost associated with computer experiments with simulation codes, validation approaches that do not require additional data points (samples) are preferable. However, it is documented that methods based on resampling, e.g., cross validation (CV), can exhibit oscillatory behavior during sequential/adaptive sampling and model refinement, thus making it difficult to quantify the approximation capabilities of the metamodels and/or to define rational stopping criteria for the metamodel refinement process. In this work, we present the results of a simulation experiment conducted to study the evolution of several error metrics during sequential model refinement, to estimate prediction errors, and to define proper stopping criteria without requiring additional samples beyond those used to build the metamodels. Our results show that it is possible to accurately estimate the predictive performance of Kriging metamodels without additional samples, and that leave-one-out CV errors perform poorly in this context. Based on our findings, we propose guidelines for choosing the sample size of computer experiments that use sequential/adaptive model refinement paradigm. We also propose a stopping criterion for sequential model refinement that does not require additional samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大耳朵图图应助善良班采纳,获得10
1秒前
浮游应助hkh采纳,获得10
2秒前
2秒前
2秒前
3秒前
思苇完成签到,获得积分10
4秒前
SKY完成签到,获得积分10
4秒前
太叔夜南完成签到,获得积分10
5秒前
wangting发布了新的文献求助10
6秒前
gstaihn发布了新的文献求助10
6秒前
LYJ完成签到,获得积分10
6秒前
晚灯君完成签到 ,获得积分10
7秒前
zn315315发布了新的文献求助30
7秒前
mtt完成签到,获得积分10
8秒前
Sylvie发布了新的文献求助30
8秒前
8秒前
9秒前
10秒前
土豪的钻石完成签到,获得积分10
10秒前
小猫最受完成签到,获得积分10
12秒前
清图完成签到,获得积分10
12秒前
Ann驳回了bmhs2017应助
13秒前
13秒前
13秒前
14秒前
三千完成签到,获得积分10
14秒前
小黄车完成签到,获得积分10
14秒前
草木完成签到 ,获得积分10
17秒前
乐乐应助赵真采纳,获得10
17秒前
BK2008发布了新的文献求助10
18秒前
18秒前
石斑鱼完成签到,获得积分10
19秒前
19秒前
拉长的念珍完成签到,获得积分10
19秒前
levie发布了新的文献求助10
19秒前
Lucas应助Janmy采纳,获得10
20秒前
科研通AI6应助笑点低雅旋采纳,获得10
21秒前
Sylvie完成签到,获得积分20
22秒前
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244