特征向量
等周不等式
数学
理论(学习稳定性)
最优化问题
建设性的
应用数学
振荡(细胞信号)
操作员(生物学)
变量(数学)
数学分析
数学优化
计算机科学
物理
生物化学
机器学习
量子力学
操作系统
遗传学
抑制因子
基因
过程(计算)
化学
生物
转录因子
作者
Alexander S. Bratus,А.П. Сейранян
出处
期刊:Journal of applied mathematics and mechanics
[Elsevier]
日期:1983-01-01
卷期号:47 (4): 451-457
被引量:36
标识
DOI:10.1016/0021-8928(83)90081-3
摘要
The problem of maximizing the minimum eigenvalue of a selfadjoint operator is examined. An isoperimetric condition is imposed on the control variable. This problem has interesting applications in the optimal design of structures. In papers on the optimization of the critical stability parameters and the frequencies of the natural oscillations of elastic systems /1–12/ it was shown that in a number of cases the optimal solutions are characterized by two or more forms of loss of stability or natural oscillations. In the case of conservative systems described by selfadjoint equations this signifies multiplicities of eigenvalues, i.e., of critical loads, under which loss of stability or of natural oscillation frequencies occurs. The necessary conditions for an extremum are obtained in the case when the optimal solution is characterized by a double eigenvalue. These conditions have a constructive character and can be used for the numerical and analytical solution of optimization problems. Both discrete and continuous cases of the specification of the original system are analyzed. Examples are given.
科研通智能强力驱动
Strongly Powered by AbleSci AI