Recommender system application developments: A survey

信息过载 计算机科学 推荐系统 多样性(控制论) 政府(语言学) 产品(数学) 服务(商务) 电子商务 资源(消歧) 数据科学 万维网 人工智能 业务 营销 哲学 几何学 语言学 数学 计算机网络
作者
Jie Lu,Dianshuang Wu,Mingsong Mao,Wei Wang,Guangquan Zhang
出处
期刊:Decision Support Systems [Elsevier]
卷期号:74: 12-32 被引量:1122
标识
DOI:10.1016/j.dss.2015.03.008
摘要

A recommender system aims to provide users with personalized online product or service recommendations to handle the increasing online information overload problem and improve customer relationship management. Various recommender system techniques have been proposed since the mid-1990s, and many sorts of recommender system software have been developed recently for a variety of applications. Researchers and managers recognize that recommender systems offer great opportunities and challenges for business, government, education, and other domains, with more recent successful developments of recommender systems for real-world applications becoming apparent. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but more importantly of the practical developments in recommender systems. This paper therefore reviews up-to-date application developments of recommender systems, clusters their applications into eight main categories: e-government, e-business, e-commerce/e-shopping, e-library, e-learning, e-tourism, e-resource services and e-group activities, and summarizes the related recommendation techniques used in each category. It systematically examines the reported recommender systems through four dimensions: recommendation methods (such as CF), recommender systems software (such as BizSeeker), real-world application domains (such as e-business) and application platforms (such as mobile-based platforms). Some significant new topics are identified and listed as new directions. By providing a state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in recommender system applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武的夏彤完成签到,获得积分10
2秒前
BallQ完成签到,获得积分10
3秒前
夏凛完成签到 ,获得积分10
4秒前
罗大黑呀完成签到,获得积分10
5秒前
树德完成签到,获得积分10
7秒前
欢喜怀绿完成签到,获得积分10
7秒前
afterall完成签到 ,获得积分10
7秒前
星辰大海应助娃娃菜妮采纳,获得10
8秒前
FBI911完成签到,获得积分0
14秒前
17秒前
18秒前
20秒前
冷酷的风华完成签到,获得积分10
21秒前
sutharsons应助欢喜怀绿采纳,获得30
22秒前
Zhouzhou应助zzzlk采纳,获得10
22秒前
娃娃菜妮发布了新的文献求助10
23秒前
26秒前
Ava应助DJMZ采纳,获得10
27秒前
moushang发布了新的文献求助10
28秒前
随机昵称完成签到,获得积分10
28秒前
思源应助王小鸿鸿鸿鸿采纳,获得10
29秒前
绿绿绿绿发布了新的文献求助10
30秒前
31秒前
思源应助李jiwei200805采纳,获得30
36秒前
36秒前
盛夏如花发布了新的文献求助10
36秒前
Mingda发布了新的文献求助10
38秒前
小鱼爱吃肉应助走不了采纳,获得10
38秒前
沉默高跟鞋完成签到,获得积分10
39秒前
yanjiusheng完成签到,获得积分10
39秒前
39秒前
40秒前
DJMZ发布了新的文献求助10
40秒前
自然枫完成签到,获得积分10
41秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
42秒前
43秒前
凯凯发布了新的文献求助10
44秒前
45秒前
45秒前
zx598376321完成签到,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312247
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521821
捐赠科研通 2620598
什么是DOI,文献DOI怎么找? 1432960
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134