Statistical Evaluation of Prognostic versus Diagnostic Models: Beyond the ROC Curve

接收机工作特性 统计的 校准 统计 预测建模 弗雷明翰风险评分 曲线下面积 风险评估 医学 疾病 计量经济学 内科学 数学 计算机科学 计算机安全
作者
Nancy R. Cook
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:54 (1): 17-23 被引量:693
标识
DOI:10.1373/clinchem.2007.096529
摘要

Abstract Background: Diagnostic and prognostic or predictive models serve different purposes. Whereas diagnostic models are usually used for classification, prognostic models incorporate the dimension of time, adding a stochastic element. Content: The ROC curve is typically used to evaluate clinical utility for both diagnostic and prognostic models. This curve assesses how well a test or model discriminates, or separates individuals into two classes, such as diseased and nondiseased. A strong risk predictor, such as lipids for cardiovascular disease, may have limited impact on the area under the curve, called the AUC or c-statistic, even if it alters predicted values. Calibration, measuring whether predicted probabilities agree with observed proportions, is another component of model accuracy important to assess. Reclassification can directly compare the clinical impact of two models by determining how many individuals would be reclassified into clinically relevant risk strata. For example, adding high-sensitivity C-reactive protein and family history to prediction models for cardiovascular disease using traditional risk factors moves approximately 30% of those at intermediate risk levels, such as 5%–10% or 10%–20% 10-year risk, into higher or lower risk categories, despite little change in the c-statistic. A calibration statistic can asses how well the new predicted values agree with those observed in the cross-classified data. Summary: Although it is useful for classification, evaluation of prognostic models should not rely solely on the ROC curve, but should assess both discrimination and calibration. Risk reclassification can aid in comparing the clinical impact of two models on risk for the individual, as well as the population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czz完成签到,获得积分10
刚刚
刚刚
李健的粉丝团团长应助chx采纳,获得10
2秒前
2秒前
3秒前
白粥完成签到 ,获得积分10
3秒前
刘慧鑫发布了新的文献求助10
3秒前
5秒前
龙飞凤舞完成签到,获得积分0
5秒前
陈晨发布了新的文献求助10
5秒前
6秒前
taotao完成签到 ,获得积分10
7秒前
7秒前
zyc发布了新的文献求助10
8秒前
8秒前
徐向成发布了新的文献求助10
8秒前
沙漠大雕发布了新的文献求助10
10秒前
科研通AI6.2应助彩色映雁采纳,获得10
11秒前
拼搏君浩发布了新的文献求助10
12秒前
zyc完成签到,获得积分10
12秒前
夜阑卧听完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
tina发布了新的文献求助10
18秒前
33完成签到,获得积分10
18秒前
23秒前
马迦南完成签到 ,获得积分10
23秒前
Nell发布了新的文献求助10
23秒前
24秒前
24秒前
李博士完成签到 ,获得积分10
24秒前
25秒前
兜里全是糖完成签到,获得积分10
26秒前
27秒前
深情安青应助ZR666888采纳,获得10
28秒前
田様应助tina采纳,获得10
28秒前
30秒前
打打应助GUKGO采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346