VI型分泌系统
周质间隙
细胞质
单元格信封
细菌外膜
生物物理学
生物发生
分泌物
膜
化学
内膜
结晶学
生物
细胞生物学
毒力
生物化学
大肠杆菌
基因
作者
Éric Durand,Van Son Nguyen,Abdelrahim Zoued,Laureen Logger,Gérard Pehau‐Arnaudet,Marie‐Stéphanie Aschtgen,S. Spinelli,Aline Desmyter,Benjamin Bardiaux,Annick Dujeancourt,Alain Roussel,Christian Cambillau,Eric Cascalès,Rémi Fronzes
出处
期刊:Nature
[Springer Nature]
日期:2015-07-01
卷期号:523 (7562): 555-560
被引量:244
摘要
Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.
科研通智能强力驱动
Strongly Powered by AbleSci AI