Korteweg–de Vries方程
偏微分方程
数学
可分偏微分方程
一阶偏微分方程
可积系统
常微分方程
财产(哲学)
松驰对
随机偏微分方程
伯格斯方程
特征线法
微分方程
动力系统理论
数学分析
双曲型偏微分方程
微分代数方程
非线性系统
物理
量子力学
认识论
哲学
作者
John Weiss,M. Tabor,G. F. Carnevale
摘要
In this paper we define the Painlevé property for partial differential equations and show how it determines, in a remarkably simple manner, the integrability, the Bäcklund transforms, the linearizing transforms, and the Lax pairs of three well-known partial differential equations (Burgers’ equation, KdV equation, and the modified KdV equation). This indicates that the Painlevé property may provide a unified description of integrable behavior in dynamical systems (ordinary and partial differential equations), while, at the same time, providing an efficient method for determining the integrability of particular systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI