Inference of Population Structure using Dense Haplotype Data

生物 连锁不平衡 推论 人口 聚类分析 可解释性 主成分分析 单倍型 联动装置(软件) 遗传学 进化生物学 计算生物学 数据挖掘 人工智能 计算机科学 人口学 社会学 基因 基因型
作者
Daniel J. Lawson,Garrett Hellenthal,Simon Myers,Daniel Falush
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:8 (1): e1002453-e1002453 被引量:1137
标识
DOI:10.1371/journal.pgen.1002453
摘要

The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this "chromosome painting" can be summarized as a "coancestry matrix," which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SC完成签到 ,获得积分10
刚刚
蜡笔小z完成签到 ,获得积分10
3秒前
孙非完成签到,获得积分10
5秒前
李彪完成签到 ,获得积分10
6秒前
能干戒指完成签到,获得积分10
6秒前
Echoheart完成签到,获得积分10
10秒前
zheng完成签到 ,获得积分10
11秒前
阿弹完成签到,获得积分10
15秒前
眰恦完成签到 ,获得积分10
16秒前
折柳完成签到 ,获得积分10
18秒前
CA274ABTFY完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
灵巧的十八完成签到 ,获得积分10
21秒前
畅快的念烟完成签到,获得积分10
21秒前
Churchill87426完成签到,获得积分10
21秒前
zcydbttj2011完成签到 ,获得积分10
22秒前
BettyNie完成签到 ,获得积分10
22秒前
Salamenda完成签到,获得积分10
22秒前
雪妮完成签到 ,获得积分10
23秒前
123完成签到 ,获得积分10
25秒前
无脚鸟完成签到,获得积分10
25秒前
平淡的雁开完成签到 ,获得积分10
26秒前
chenkj完成签到,获得积分10
26秒前
EricSai完成签到,获得积分10
26秒前
26秒前
ikun完成签到,获得积分10
26秒前
t12s2365_完成签到 ,获得积分10
26秒前
安澜完成签到,获得积分10
27秒前
埋头苦干科研完成签到,获得积分10
29秒前
const完成签到,获得积分10
30秒前
完犊子发布了新的文献求助10
30秒前
虚幻谷波完成签到,获得积分10
30秒前
31秒前
清风徐来完成签到,获得积分10
32秒前
木康薛完成签到,获得积分10
34秒前
无私的朝雪完成签到 ,获得积分10
37秒前
蓝桉完成签到 ,获得积分10
37秒前
ludong_0应助完犊子采纳,获得10
38秒前
chaoschen完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015