Inference of Population Structure using Dense Haplotype Data

生物 连锁不平衡 推论 人口 聚类分析 可解释性 主成分分析 单倍型 联动装置(软件) 遗传学 进化生物学 计算生物学 数据挖掘 人工智能 计算机科学 基因 基因型 社会学 人口学
作者
Daniel J. Lawson,Garrett Hellenthal,Simon Myers,Daniel Falush
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:8 (1): e1002453-e1002453 被引量:1137
标识
DOI:10.1371/journal.pgen.1002453
摘要

The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this "chromosome painting" can be summarized as a "coancestry matrix," which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
万能图书馆应助雪糕采纳,获得10
1秒前
量子星尘发布了新的文献求助10
4秒前
ChatGPT完成签到,获得积分10
5秒前
淡然的剑通完成签到 ,获得积分10
7秒前
8秒前
onevip完成签到,获得积分0
8秒前
11秒前
白瑾完成签到 ,获得积分10
13秒前
蔷薇完成签到,获得积分10
14秒前
laoxie301发布了新的文献求助20
14秒前
billkin完成签到,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
有血条就敢上完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
ffy完成签到,获得积分20
22秒前
景代丝完成签到,获得积分0
24秒前
量子星尘发布了新的文献求助10
24秒前
xmqaq完成签到,获得积分10
24秒前
24秒前
Gary完成签到,获得积分20
26秒前
小海豹完成签到,获得积分10
28秒前
天天快乐应助蔷薇采纳,获得10
30秒前
柒柒球完成签到 ,获得积分10
30秒前
历史真相完成签到,获得积分20
31秒前
小海豹发布了新的文献求助10
32秒前
彬彬完成签到 ,获得积分10
35秒前
Jerry完成签到 ,获得积分10
36秒前
Overlap完成签到 ,获得积分10
36秒前
韧迹完成签到 ,获得积分0
39秒前
40秒前
量子星尘发布了新的文献求助10
45秒前
凌露完成签到 ,获得积分0
47秒前
量子星尘发布了新的文献求助10
48秒前
安子完成签到 ,获得积分10
49秒前
科研通AI6应助yyy2025采纳,获得10
51秒前
xiang完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936