Due to its ability to tolerate high channel loss, decoy-state quantum key distribution (QKD) has been one of the main focuses within the QKD community. Notably, several experimental groups have demonstrated that it is secure and feasible under real-world conditions. Crucially, however, the security and feasibility claims made by most of these experiments were obtained under the assumption that the eavesdropper is restricted to particular types of attacks or that the finite-key effects are neglected. Unfortunately, such assumptions are not possible to guarantee in practice. In this work, we provide concise and tight finite-key security bounds for practical decoy-state QKD that are valid against general attacks.