Using low‐spectral‐resolution images to acquire simulated hyperspectral images

高光谱成像 全光谱成像 计算机科学 人工智能 像素 遥感 计算机视觉 光谱分辨率 图像分辨率 模式识别(心理学) 地理 谱线 物理 天文
作者
Fang Chen,Zheng Niu,Genyun Sun,ChangYao Wang,Jack Teng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:29 (10): 2963-2980 被引量:21
标识
DOI:10.1080/01431160701408410
摘要

We propose a method to acquire simulated hyperspectral images using low‐spectral‐resolution images. Hyperspectral images provide more spectral information than low‐spectral‐resolution images, because of the additional spectral bands used for data acquisition in hyperspectral imaging. Unfortunately, original hyperspectral images are more expensive and more difficult to acquire. However, some research questions require an abundance of spectral information for ground monitoring, which original hyperspectral images can easily provide. Hence, we need to propose a method to acquire simulated hyperspectral images, when original hyperspectral images are especially necessary. Since low‐spectral‐resolution images are readily available and cheaper, we develop a method to acquire simulated hyperspectral images using low‐spectral‐resolution images. With simulated hyperspectral images, we can acquire more 'hidden' information from low‐spectral‐resolution images. Our method uses the principles of pixel‐mixing to understand the compositional relationship of spectrum data to an image pixel, and to simulate radiation transmission processes. To this end, we use previously obtained data (i.e. spectrum library) and the sorting data of objects that are derived from a low‐spectral‐resolution image. Using the simulation of radiation transmission processes and these different data, we acquire simulated hyperspectral images. In addition, previous analyses of simulated remotely sensed images do not use quantitative statistical measures, but use qualitative methods, describing simulated images by sight. Here, we quantitatively assess our simulation by comparing the correlation coefficients of simulated images and real images. Finally, we use simulated hyperspectral images, real Hyperion images, and their corresponding ALI images to generate several classification images. The classification results demonstrate that simulated hyperspectral data contain additional information not available in the multispectral data. We find that our method can acquire simulated hyperspectral images quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
KOBE94FU完成签到,获得积分10
4秒前
6秒前
litpand完成签到,获得积分0
7秒前
dennisysz发布了新的文献求助10
12秒前
13秒前
鬼小妞nice完成签到 ,获得积分10
19秒前
xinyue发布了新的文献求助10
20秒前
21秒前
甜甜穆完成签到,获得积分10
22秒前
tuzi完成签到,获得积分10
23秒前
终澈完成签到,获得积分10
24秒前
淡然靖柔完成签到,获得积分10
25秒前
彭于晏应助温婉的书蕾采纳,获得10
26秒前
wf0806发布了新的文献求助10
26秒前
35秒前
35秒前
田様应助wf0806采纳,获得10
36秒前
Steven发布了新的文献求助10
37秒前
zz发布了新的文献求助10
40秒前
飞快的枕头完成签到,获得积分10
41秒前
41秒前
科研通AI5应助SCI采纳,获得10
43秒前
guanyu108完成签到,获得积分10
46秒前
49秒前
重要的小丸子完成签到,获得积分10
50秒前
炙热念双完成签到 ,获得积分10
51秒前
51秒前
SCI发布了新的文献求助10
55秒前
dennisysz发布了新的文献求助10
56秒前
1分钟前
科研通AI5应助你好好好采纳,获得10
1分钟前
海棠微雨完成签到,获得积分10
1分钟前
小夏发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
YY-Bubble完成签到,获得积分10
1分钟前
爆米花应助久别采纳,获得10
1分钟前
玉灵子发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103