已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Core–Shell Fe3O4@C Conductive Additives for Magnetic Flow-Electrode Capacitive Deionization: Reconstruction of Charge Percolation Networks

电容去离子 材料科学 电极 磁场 活性炭 磁性纳米粒子 渗透(认知心理学) 化学工程 吸附 纳米技术 分析化学(期刊) 光电子学 纳米颗粒 电化学 化学 色谱法 生物 物理 工程类 物理化学 神经科学 有机化学 量子力学
作者
Longqian Xu,Shuai Peng,Liang Tang,Yang Zong,Yunfeng Mao,Minghong Wu,Deli Wu
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (1): 94-104 被引量:9
标识
DOI:10.1021/acsestengg.2c00254
摘要

Flow-electrode capacitive deionization (FCDI) based on suspension or semisolid electrodes is a promising alternative for large-scale applications, yet precise control over their transport behavior has not yet been accomplished. Here, we report a general approach for remotely manipulating the transport of the hybrid suspension electrodes composed of core–shell Fe3O4@C nanoparticles and powdered activated carbon (AC) simply by employing a magnetic field. Benefiting from the reconfiguration of the charge percolation networks, the average salt removal rate (ASRR) of magnetic FCDI was increased by 61.7% compared to that of FCDI without the magnetic field. The mechanism of magnetic field-magnetic carbon (MC) coupling includes three main pathways: (i) increasing the local concentration of active electrodes on the current collector surface, (ii) increasing the contact sites available to the current collector, and (iii) shortening the ion transport distance. It was also demonstrated that MC could be used as a novel active electrode by further increasing the adsorption capacity of the carbon shell. Under a moderate magnetic flux (Φ = 45 mT), the ASRR and charge efficiency reached 0.16 μm cm–2 min–1 and 94.3%, respectively. In addition, MC is mechanically and chemically robust and can be recovered and reused in long-term operation by magnetic separation. In brief, our study introduces a general strategy to enhance charge transport in suspension electrodes and demonstrates the promising potential of magnetic FCDI for efficient and low-cost desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
pupuply完成签到,获得积分10
7秒前
顾矜应助shawn采纳,获得20
8秒前
霓娜酱发布了新的文献求助10
9秒前
11秒前
藤椒辣鱼应助DrWho采纳,获得10
11秒前
完美世界应助zcg采纳,获得10
11秒前
哦哦哦哦哦完成签到,获得积分20
12秒前
12秒前
mic完成签到,获得积分10
12秒前
14秒前
俗人完成签到,获得积分10
15秒前
ceeray23应助Philips采纳,获得10
15秒前
饿之巨人完成签到,获得积分10
15秒前
藤椒辣鱼应助CC采纳,获得10
17秒前
18秒前
19秒前
杳鸢应助xiao xu采纳,获得80
19秒前
19秒前
英姑应助xuqiansd采纳,获得10
19秒前
19秒前
果果发布了新的文献求助30
23秒前
容止发布了新的文献求助10
23秒前
姜太公发布了新的文献求助10
24秒前
赵赵赵发布了新的文献求助10
24秒前
xxxxxx完成签到 ,获得积分10
25秒前
时行舒完成签到,获得积分20
25秒前
FashionBoy应助DrWho采纳,获得10
27秒前
28秒前
28秒前
snowyyy完成签到,获得积分10
29秒前
ceeray23应助Nox采纳,获得10
30秒前
俗人发布了新的文献求助10
32秒前
xuqiansd发布了新的文献求助10
32秒前
容止完成签到,获得积分10
33秒前
科研通AI2S应助DrWho采纳,获得10
34秒前
希望天下0贩的0应助Elsia采纳,获得10
36秒前
37秒前
风起完成签到 ,获得积分10
37秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459939
求助须知:如何正确求助?哪些是违规求助? 3054253
关于积分的说明 9041113
捐赠科研通 2743493
什么是DOI,文献DOI怎么找? 1504932
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694764