Novel trajectory privacy protection method against prediction attacks

可预测性 计算机科学 弹道 均方误差 数据挖掘 推论 人工智能 统计 数学 天文 物理
作者
Shuyuan Qiu,Dechang Pi,Yanxue Wang,Yufei Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118870-118870 被引量:14
标识
DOI:10.1016/j.eswa.2022.118870
摘要

When the public uses Location-based Services (LBSs), their location information is constantly exposed. Owing to the spatiotemporal correlation of trajectories, it is easy for attackers to use historical trajectories and background knowledge to predict future locations of target users. We refer to this type of inference attack as a trajectory prediction attack. To address such potential but threatening attacks in a continuous location query, we propose a novel trajectory privacy protection method. The proposed algorithm aims to generate an indistinguishable perturbed location that is robust to the prediction attack, wherein the user’s real location can be replaced by a perturbed location when submitted to an untrusted server. First, a hidden Markov model-based trajectory prediction mechanism is proposed to simulate predictive attacks and compute the predictability of positions before the trajectory is released. Second, the w sliding window mechanism is designed to dynamically adjust the privacy protection degree of each location point in the trajectory according to the predictability of the location and privacy needs of users. Finally, we propose a bounded noise-adding algorithm based on the Laplace mechanism to improve the usability of data. In our experiments, mutual information, trajectory root-mean-square error, query error, and root-mean-square predictability were used as evaluation criteria, and the performance of the proposed method was comprehensively evaluated. The results show that our algorithm can reduce the trajectory predictability to 0.21 without reducing data availability, which is effective against prediction attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河狸上校完成签到 ,获得积分10
1秒前
土豆淀粉完成签到 ,获得积分10
1秒前
听风完成签到,获得积分10
2秒前
miqiqi完成签到,获得积分10
3秒前
王婧萱萱萱完成签到 ,获得积分10
3秒前
甜美香之完成签到 ,获得积分10
4秒前
4秒前
善学以致用应助瞿寒采纳,获得10
4秒前
4秒前
田様应助勇敢且鲁班采纳,获得10
7秒前
chenu完成签到 ,获得积分10
9秒前
xhl发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
Peng丶Young完成签到,获得积分10
12秒前
暴躁的问兰完成签到 ,获得积分10
12秒前
kevin完成签到,获得积分10
13秒前
小蘑菇应助喏晨采纳,获得10
14秒前
15秒前
瞿寒发布了新的文献求助10
15秒前
思源应助百甲采纳,获得10
16秒前
Negoluse发布了新的文献求助50
17秒前
彭于晏应助文斌采纳,获得10
18秒前
123free完成签到,获得积分10
18秒前
20秒前
酷波er应助lan采纳,获得10
21秒前
淼淼完成签到 ,获得积分10
21秒前
王子娇完成签到 ,获得积分10
22秒前
Ray_Chun完成签到,获得积分10
27秒前
活力的妙芙完成签到,获得积分10
30秒前
firewood完成签到,获得积分10
32秒前
wbb完成签到 ,获得积分10
32秒前
暴发户完成签到,获得积分20
33秒前
小蘑菇应助小龙仔123采纳,获得10
36秒前
hero_ljw完成签到,获得积分10
38秒前
111完成签到,获得积分10
39秒前
思源应助科研通管家采纳,获得10
39秒前
dgshbsf应助科研通管家采纳,获得10
39秒前
tramp应助科研通管家采纳,获得10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278