Optimizing Training Efficiency and Cost of Hierarchical Federated Learning in Heterogeneous Mobile-Edge Cloud Computing

计算机科学 云计算 利用 GSM演进的增强数据速率 分布式计算 加速 边缘设备 高效能源利用 移动设备 培训(气象学) 人工智能 操作系统 计算机安全 气象学 工程类 物理 电气工程
作者
Yangguang Cui,Kun Cao,Junlong Zhou,Tongquan Wei
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1518-1531 被引量:1
标识
DOI:10.1109/tcad.2022.3205551
摘要

Federated learning (FL), an emerging distributed machine learning (ML) technique, allows massive embedded devices and a server to work together for training a global ML model without collecting user data on a server. Most existing approaches adopt the traditional centralized FL paradigm with a single server: one is the cloud-centric FL paradigm and the other is the edge-centric FL paradigm. The cloud-centric FL paradigm is able to manage a large-scale FL system across massive user devices with high communication cost, whereas the edge-centric FL paradigm is capable of coordinating a small-scale FL system benefiting from the low communication delay over wireless networks. To fully exploit the advantages of both, in this article, we develop a distinctive hierarchical FL framework for the promising mobile-edge cloud computing (MECC) system, called HELCHFL, to achieve high-efficiency and low-cost hierarchical FL training. In particular, we formulate the corresponding theoretical foundation for our HELCHFL to ensure hierarchical training performance. Furthermore, to address the inherent communication and user heterogeneity issues of FL training, our HELCHFL develops a utility-driven and heterogeneity-aware heuristic user selection strategy to enhance training performance and reduce training delay. Subsequently, by analyzing and utilizing the slack time in FL training, our HELCHFL introduces a device operating frequency determination approach to reduce training energy cost. Experiments demonstrate that our HELCHFL can enhance the highest accuracy by up to 52.93%, gain the training speedup of up to 483.74%, and obtain up to 45.59% training energy savings compared to state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的凡灵应助云行采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
从笙完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
Hh发布了新的文献求助10
6秒前
wangchong发布了新的文献求助10
6秒前
zacara完成签到,获得积分20
6秒前
李健的小迷弟应助王颖采纳,获得10
7秒前
QQ发布了新的文献求助20
7秒前
英姑应助小王同学采纳,获得10
8秒前
9秒前
11秒前
优雅苑睐完成签到,获得积分10
12秒前
ekdjk完成签到,获得积分10
14秒前
14秒前
无限白易完成签到,获得积分0
15秒前
研友_VZG7GZ应助wo采纳,获得10
16秒前
16秒前
黑面宝宝完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
19秒前
Clivia发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
文静的翠彤完成签到 ,获得积分10
22秒前
zengyan发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
CCC完成签到 ,获得积分10
26秒前
巧兮关注了科研通微信公众号
26秒前
耍酷白筠完成签到,获得积分20
27秒前
1029zx关注了科研通微信公众号
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350