Optimizing Training Efficiency and Cost of Hierarchical Federated Learning in Heterogeneous Mobile-Edge Cloud Computing

计算机科学 云计算 利用 GSM演进的增强数据速率 分布式计算 加速 边缘设备 高效能源利用 移动设备 培训(气象学) 人工智能 操作系统 计算机安全 气象学 工程类 物理 电气工程
作者
Yangguang Cui,Kun Cao,Junlong Zhou,Tongquan Wei
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1518-1531 被引量:1
标识
DOI:10.1109/tcad.2022.3205551
摘要

Federated learning (FL), an emerging distributed machine learning (ML) technique, allows massive embedded devices and a server to work together for training a global ML model without collecting user data on a server. Most existing approaches adopt the traditional centralized FL paradigm with a single server: one is the cloud-centric FL paradigm and the other is the edge-centric FL paradigm. The cloud-centric FL paradigm is able to manage a large-scale FL system across massive user devices with high communication cost, whereas the edge-centric FL paradigm is capable of coordinating a small-scale FL system benefiting from the low communication delay over wireless networks. To fully exploit the advantages of both, in this article, we develop a distinctive hierarchical FL framework for the promising mobile-edge cloud computing (MECC) system, called HELCHFL, to achieve high-efficiency and low-cost hierarchical FL training. In particular, we formulate the corresponding theoretical foundation for our HELCHFL to ensure hierarchical training performance. Furthermore, to address the inherent communication and user heterogeneity issues of FL training, our HELCHFL develops a utility-driven and heterogeneity-aware heuristic user selection strategy to enhance training performance and reduce training delay. Subsequently, by analyzing and utilizing the slack time in FL training, our HELCHFL introduces a device operating frequency determination approach to reduce training energy cost. Experiments demonstrate that our HELCHFL can enhance the highest accuracy by up to 52.93%, gain the training speedup of up to 483.74%, and obtain up to 45.59% training energy savings compared to state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小俞发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
zanilia应助科研通管家采纳,获得20
2秒前
wanci应助科研通管家采纳,获得10
2秒前
敏敏应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
8R60d8应助lzy采纳,获得10
2秒前
xiaofei666应助科研通管家采纳,获得100
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
3秒前
zanilia应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
容言发布了新的文献求助10
4秒前
饱满的土豆完成签到,获得积分10
4秒前
5秒前
大旭完成签到 ,获得积分10
5秒前
迷路的松完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
9秒前
CCC发布了新的文献求助30
10秒前
上官若男应助树先生采纳,获得10
10秒前
11秒前
哈哈发布了新的文献求助10
11秒前
通行证发布了新的文献求助10
11秒前
dashi完成签到 ,获得积分10
12秒前
唠嗑在呐发布了新的文献求助10
12秒前
13秒前
在水一方应助梁子奥里给采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313983
求助须知:如何正确求助?哪些是违规求助? 2946364
关于积分的说明 8529773
捐赠科研通 2622015
什么是DOI,文献DOI怎么找? 1434286
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774