A radiogenomics biomarker based on immunological heterogeneity for non-invasive prognosis of renal clear cell carcinoma

放射基因组学 肾透明细胞癌 免疫系统 生物标志物 免疫检查点 生物 肾细胞癌 肿瘤科 医学 免疫疗法 免疫学 无线电技术 遗传学 放射科
作者
Jiahao Gao,Fangdie Ye,Fang Han,Haowen Jiang,Jiawen Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:7
标识
DOI:10.3389/fimmu.2022.956679
摘要

Background Tumor immunological heterogeneity potentially influences the prognostic disparities among patients with clear cell renal cell carcinoma (ccRCC); however, there is a lack of macroscopic imaging tools that can be used to predict immune-related gene expression in ccRCC. Methods A novel non-invasive radiogenomics biomarker was constructed for immune-related gene expression in ccRCC. First, 520 ccRCC transcriptomic datasets from The Cancer Genome Atlas (TCGA) were analyzed using a non-negative matrix decomposition (NMF) clustering to identify immune-related molecular subtypes. Immune-related prognostic genes were analyzed through Cox regression and Gene Set Enrichment Analysis (GSEA). We then built a risk model based on an immune-related gene subset to predict prognosis in patients with ccRCC. CT images corresponding to the ccRCC patients in The Cancer Imaging Archive (TCIA) database were used to extract radiomic features. To stratify immune-related gene expression levels, extracted radiogenomics features were identified according to standard consecutive steps. A nomogram was built to combine radiogenomics and clinicopathological information through multivariate logistic regression to further enhance the radiogenomics model. Mann–Whitney U test and ROC curves were used to assess the effectiveness of the radiogenomics marker. Results NMF methods successfully clustered patients into diverse subtypes according to gene expression levels in the tumor microenvironment (TME). The relative abundance of 10 immune cell populations in each tissue was also analyzed. The immune-related genomic signature (consisting of eight genes) of the tumor was shown to be significantly associated with survival in patients with ccRCC in TCGA database. The immune-related genomic signature was delineated by grouping the signature expression as either low- or high-risk. Using TCIA database, we constructed a radiogenomics biomarker consisting of 11 radiomic features that were optimal predictors of immune-related gene signature expression levels, which demonstrated AUC (area under the ROC curve) values of 0.76 and 0.72 in the training and validation groups, respectively. The nomogram built by combining radiomics and clinical pathological information could further improve the predictive efficacy of the radiogenomics model (AUC = 0.81, 074). Conclusions The novel prognostic radiogenomics biomarker achieved excellent correlation with the immune-related gene expression status of patients with ccRCC and could successfully stratify the survival status of patients in TCGA database. It is anticipated that this work will assist in selecting precise clinical treatment strategies. This study may also lead to precise theranostics for patients with ccRCC in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小华安发布了新的文献求助10
刚刚
可爱的函函应助金城武采纳,获得10
2秒前
材1完成签到 ,获得积分10
2秒前
2秒前
2秒前
言午山高完成签到 ,获得积分10
4秒前
Sparks发布了新的文献求助10
4秒前
拼搏草莓发布了新的文献求助10
5秒前
CZJ完成签到,获得积分10
5秒前
今后应助MuKaSi采纳,获得10
5秒前
领导范儿应助Kate采纳,获得30
5秒前
6秒前
7秒前
cyan完成签到,获得积分20
7秒前
8秒前
Lemon发布了新的文献求助10
8秒前
seashell完成签到,获得积分10
9秒前
自由依秋完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Mockingjay发布了新的文献求助10
10秒前
zjw完成签到,获得积分10
11秒前
小华安完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
经竺完成签到,获得积分10
12秒前
12秒前
seashell发布了新的文献求助30
12秒前
13秒前
汉堡包应助cyan采纳,获得10
14秒前
14秒前
Hello应助Lemon采纳,获得10
15秒前
Mmmmmm发布了新的文献求助10
16秒前
简单关注了科研通微信公众号
17秒前
17秒前
17秒前
17秒前
大黄万岁发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666053
求助须知:如何正确求助?哪些是违规求助? 4879128
关于积分的说明 15116083
捐赠科研通 4825220
什么是DOI,文献DOI怎么找? 2583153
邀请新用户注册赠送积分活动 1537198
关于科研通互助平台的介绍 1495512