Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction

石墨烯 材料科学 纳米技术 半导体 外延 带隙 光电子学 工程物理 图层(电子) 工程类
作者
Hyunseok Kim,Sangho Lee,Jiho Shin,Menglin Zhu,Marx Akl,Kuangye Lu,Ne Myo Han,Yongmin Baek,Celesta S. Chang,Jun Min Suh,Ki Seok Kim,Bo‐In Park,Yanming Zhang,Chanyeol Choi,Heechang Shin,He Yu,Yuan Meng,Seung‐Il Kim,Seungju Seo,Kyusang Lee
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:17 (10): 1054-1059 被引量:58
标识
DOI:10.1038/s41565-022-01200-6
摘要

Heterogeneous integration of single-crystal materials offers great opportunities for advanced device platforms and functional systems1. Although substantial efforts have been made to co-integrate active device layers by heteroepitaxy, the mismatch in lattice polarity and lattice constants has been limiting the quality of the grown materials2. Layer transfer methods as an alternative approach, on the other hand, suffer from the limited availability of transferrable materials and transfer-process-related obstacles3. Here, we introduce graphene nanopatterns as an advanced heterointegration platform that allows the creation of a broad spectrum of freestanding single-crystalline membranes with substantially reduced defects, ranging from non-polar materials to polar materials and from low-bandgap to high-bandgap semiconductors. Additionally, we unveil unique mechanisms to substantially reduce crystallographic defects such as misfit dislocations, threading dislocations and antiphase boundaries in lattice- and polarity-mismatched heteroepitaxial systems, owing to the flexibility and chemical inertness of graphene nanopatterns. More importantly, we develop a comprehensive mechanics theory to precisely guide cracks through the graphene layer, and demonstrate the successful exfoliation of any epitaxial overlayers grown on the graphene nanopatterns. Thus, this approach has the potential to revolutionize the heterogeneous integration of dissimilar materials by widening the choice of materials and offering flexibility in designing heterointegrated systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助天天采纳,获得20
刚刚
1秒前
浮游应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
羽翼应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
呼延半邪完成签到 ,获得积分10
4秒前
思源应助dawncat采纳,获得10
4秒前
4秒前
4秒前
俊逸半烟发布了新的文献求助10
4秒前
小二郎应助醉意拥桃枝采纳,获得10
6秒前
6秒前
小蘑菇应助晨澜采纳,获得30
6秒前
科研通AI6应助123采纳,获得10
6秒前
444完成签到,获得积分10
6秒前
sam0522发布了新的文献求助10
6秒前
无极微光应助hhhhh采纳,获得20
9秒前
9秒前
10秒前
橙子发布了新的文献求助10
10秒前
天天完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
无极微光应助李卓航采纳,获得20
11秒前
Liang发布了新的文献求助10
11秒前
华仔应助123rgk采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900