Compensation cycle consistent generative adversarial networks (Comp‐GAN) for synthetic CT generation from MR scans with truncated anatomy

人工智能 计算机科学 霍恩斯菲尔德秤 体素 生成对抗网络 计算机视觉 核医学 计算机断层摄影术 深度学习 模式识别(心理学) 医学 放射科
作者
Yao Zhao,He Wang,Cenji Yu,Laurence E. Court,Xin Wang,Qianxia Wang,Tinsu Pan,Yao Ding,Jack Phan,Jinzhong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4399-4414 被引量:13
标识
DOI:10.1002/mp.16246
摘要

Abstract Background MR scans used in radiotherapy can be partially truncated due to the limited field of view (FOV), affecting dose calculation accuracy in MR‐based radiation treatment planning. Purpose We proposed a novel Compensation‐cycleGAN (Comp‐cycleGAN) by modifying the cycle‐consistent generative adversarial network (cycleGAN), to simultaneously create synthetic CT (sCT) images and compensate the missing anatomy from the truncated MR images. Methods Computed tomography (CT) and T1 MR images with complete anatomy of 79 head‐and‐neck patients were used for this study. The original MR images were manually cropped 10–25 mm off at the posterior head to simulate clinically truncated MR images. Fifteen patients were randomly chosen for testing and the rest of the patients were used for model training and validation. Both the truncated and original MR images were used in the Comp‐cycleGAN training stage, which enables the model to compensate for the missing anatomy by learning the relationship between the truncation and known structures. After the model was trained, sCT images with complete anatomy can be generated by feeding only the truncated MR images into the model. In addition, the external body contours acquired from the CT images with full anatomy could be an optional input for the proposed method to leverage the additional information of the actual body shape for each test patient. The mean absolute error (MAE) of Hounsfield units (HU), peak signal‐to‐noise ratio (PSNR), and structural similarity index (SSIM) were calculated between sCT and real CT images to quantify the overall sCT performance. To further evaluate the shape accuracy, we generated the external body contours for sCT and original MR images with full anatomy. The Dice similarity coefficient (DSC) and mean surface distance (MSD) were calculated between the body contours of sCT and original MR images for the truncation region to assess the anatomy compensation accuracy. Results The average MAE, PSNR, and SSIM calculated over test patients were 93.1 HU/91.3 HU, 26.5 dB/27.4 dB, and 0.94/0.94 for the proposed Comp‐cycleGAN models trained without/with body‐contour information, respectively. These results were comparable with those obtained from the cycleGAN model which is trained and tested on full‐anatomy MR images, indicating the high quality of the sCT generated from truncated MR images by the proposed method. Within the truncated region, the mean DSC and MSD were 0.85/0.89 and 1.3/0.7 mm for the proposed Comp‐cycleGAN models trained without/with body contour information, demonstrating good performance in compensating the truncated anatomy. Conclusions We developed a novel Comp‐cycleGAN model that can effectively create sCT with complete anatomy compensation from truncated MR images, which could potentially benefit the MRI‐based treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nana完成签到,获得积分10
3秒前
调皮醉波完成签到 ,获得积分10
3秒前
Yan完成签到,获得积分10
3秒前
可靠若云完成签到,获得积分10
4秒前
5秒前
嘟嘟噜完成签到,获得积分10
5秒前
7秒前
YXH完成签到,获得积分20
7秒前
黎明发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Lialilico发布了新的文献求助10
8秒前
5km完成签到,获得积分10
9秒前
10秒前
10秒前
甜美砖家完成签到 ,获得积分10
11秒前
小二郎应助姜然采纳,获得10
11秒前
小昼完成签到,获得积分10
12秒前
12秒前
陈小二完成签到,获得积分10
12秒前
Natua发布了新的文献求助10
15秒前
诚心的毛豆完成签到,获得积分10
15秒前
18秒前
笑一笑完成签到 ,获得积分10
18秒前
思源应助过时的哑铃采纳,获得10
19秒前
20秒前
共享精神应助黎明采纳,获得10
20秒前
领导范儿应助大反应釜采纳,获得10
23秒前
lwwlccc完成签到,获得积分10
23秒前
Fun发布了新的文献求助10
24秒前
慕青应助虚心的寻双采纳,获得10
26秒前
Lialilico完成签到,获得积分10
27秒前
qqa完成签到,获得积分10
28秒前
大个应助haha0329采纳,获得10
30秒前
追寻飞风完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
落寞太阳完成签到,获得积分10
32秒前
zzz完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032