亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compensation cycle consistent generative adversarial networks (Comp‐GAN) for synthetic CT generation from MR scans with truncated anatomy

人工智能 计算机科学 霍恩斯菲尔德秤 体素 生成对抗网络 计算机视觉 核医学 计算机断层摄影术 深度学习 模式识别(心理学) 医学 放射科
作者
Yao Zhao,He Wang,Cenji Yu,Laurence E. Court,Xin Wang,Qianxia Wang,Tinsu Pan,Yao Ding,Jack Phan,Jinzhong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4399-4414 被引量:13
标识
DOI:10.1002/mp.16246
摘要

Abstract Background MR scans used in radiotherapy can be partially truncated due to the limited field of view (FOV), affecting dose calculation accuracy in MR‐based radiation treatment planning. Purpose We proposed a novel Compensation‐cycleGAN (Comp‐cycleGAN) by modifying the cycle‐consistent generative adversarial network (cycleGAN), to simultaneously create synthetic CT (sCT) images and compensate the missing anatomy from the truncated MR images. Methods Computed tomography (CT) and T1 MR images with complete anatomy of 79 head‐and‐neck patients were used for this study. The original MR images were manually cropped 10–25 mm off at the posterior head to simulate clinically truncated MR images. Fifteen patients were randomly chosen for testing and the rest of the patients were used for model training and validation. Both the truncated and original MR images were used in the Comp‐cycleGAN training stage, which enables the model to compensate for the missing anatomy by learning the relationship between the truncation and known structures. After the model was trained, sCT images with complete anatomy can be generated by feeding only the truncated MR images into the model. In addition, the external body contours acquired from the CT images with full anatomy could be an optional input for the proposed method to leverage the additional information of the actual body shape for each test patient. The mean absolute error (MAE) of Hounsfield units (HU), peak signal‐to‐noise ratio (PSNR), and structural similarity index (SSIM) were calculated between sCT and real CT images to quantify the overall sCT performance. To further evaluate the shape accuracy, we generated the external body contours for sCT and original MR images with full anatomy. The Dice similarity coefficient (DSC) and mean surface distance (MSD) were calculated between the body contours of sCT and original MR images for the truncation region to assess the anatomy compensation accuracy. Results The average MAE, PSNR, and SSIM calculated over test patients were 93.1 HU/91.3 HU, 26.5 dB/27.4 dB, and 0.94/0.94 for the proposed Comp‐cycleGAN models trained without/with body‐contour information, respectively. These results were comparable with those obtained from the cycleGAN model which is trained and tested on full‐anatomy MR images, indicating the high quality of the sCT generated from truncated MR images by the proposed method. Within the truncated region, the mean DSC and MSD were 0.85/0.89 and 1.3/0.7 mm for the proposed Comp‐cycleGAN models trained without/with body contour information, demonstrating good performance in compensating the truncated anatomy. Conclusions We developed a novel Comp‐cycleGAN model that can effectively create sCT with complete anatomy compensation from truncated MR images, which could potentially benefit the MRI‐based treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分20
3秒前
Jonas完成签到,获得积分10
22秒前
摆烂的熊猫完成签到,获得积分20
54秒前
柔弱的恋风完成签到 ,获得积分10
2分钟前
2分钟前
ding应助淡然平蓝采纳,获得10
2分钟前
chiazy完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
zyx完成签到,获得积分10
4分钟前
wy123完成签到 ,获得积分10
4分钟前
善学以致用应助markzhang采纳,获得10
5分钟前
5分钟前
markzhang发布了新的文献求助10
5分钟前
喜雨起来啦完成签到,获得积分10
5分钟前
SciGPT应助markzhang采纳,获得10
5分钟前
科研通AI2S应助zhouleiwang采纳,获得10
7分钟前
冬去春来完成签到 ,获得积分10
7分钟前
烟花应助zhouleiwang采纳,获得10
7分钟前
上官若男应助碧蓝一德采纳,获得10
7分钟前
7分钟前
yy发布了新的文献求助10
8分钟前
8分钟前
顾矜应助yy采纳,获得10
8分钟前
烟花应助科研通管家采纳,获得10
8分钟前
markzhang发布了新的文献求助10
8分钟前
yy完成签到,获得积分10
8分钟前
markzhang完成签到,获得积分10
8分钟前
8分钟前
zhouleiwang发布了新的文献求助10
8分钟前
9分钟前
10分钟前
浮曳发布了新的文献求助10
10分钟前
Sandy完成签到 ,获得积分10
10分钟前
10分钟前
雅樱发布了新的文献求助10
10分钟前
浮曳完成签到,获得积分10
10分钟前
可爱的函函应助mochi采纳,获得10
11分钟前
雅樱完成签到,获得积分10
11分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7807005
捐赠科研通 2449865
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328