多模光纤
谐振器
材料科学
激光器
光学
光电子学
拉曼光谱
波长
拉曼激光器
拉曼散射
物理
光纤
作者
Yaojing Zhang,Keyi Zhong,Hon Ki Tsang
摘要
Multimode integrated waveguides have large fabrication tolerances and enable low propagation losses. Multimode waveguide bends have, therefore, been used for high-quality (Q) factor multimode resonators. Conventional multimode circular bends typically require large bend radii to avoid the excitation of the higher-order modes. In this paper, we make use of multimode adiabatic bends in a multimode silicon racetrack resonator with a compact footprint of 0.16 mm2. The adiabatic bends help suppress the higher-order modes. The Q factor of the racetrack resonator has an average value of 2.2 × 106 in the wavelength range of 1260–1480 nm. Benefiting from the broadband high-Q multimode racetrack resonator, we experimentally demonstrated a continuous-wave Raman laser with a widely tunable wavelength range of 157 nm. The Raman laser has a threshold power of 0.2 mW and one of the highest slope efficiencies of 27.5%. This work shows how a high-efficiency integrated Raman laser can be achieved with a wide tunable wavelength range, compact footprint, and low threshold power for a tunable source that can extend the output wavelength beyond the direct output range of the pump laser.
科研通智能强力驱动
Strongly Powered by AbleSci AI