Pressure-Optimized Band Gap and Enhanced Photoelectric Response of Graphitic Carbon Nitride with Nitrogen Vacancies

带隙 光电效应 材料科学 吸收(声学) 半导体 氮化物 拉曼光谱 氮气 光电子学 凝聚态物理 分析化学(期刊) 纳米技术 光学 物理 化学 复合材料 量子力学 图层(电子) 色谱法
作者
Peng Cheng,Deyuan Yao,Jinwei Yan,Tingting Ye,Huanhuan Liu,Hong Zeng,Xiaomei Pan,Genqiang Zhang,Junfeng Ding
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (2) 被引量:12
标识
DOI:10.1103/physrevapplied.19.024048
摘要

Graphitic carbon nitride ($g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$) shows favorable performance as a photocatalyst and has attracted widespread attention in recent years. As its wide band gap of 2.70 eV limits light absorption in the visible range, many efforts have been made to optimize the band gap. In this report, pressure is used to engineer the band gap and photoelectric response of nitrogen-deficient $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$ nanoflakes. The band gap of the sample is first narrowed to 2.40 eV due to the introduction of nitrogen vacancies and then further narrowed to 1.70 eV by pressure, which is the lowest value reported in the literature for undoped $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$. Accordingly, the photoelectric response increases by nearly 50% because of the enhanced light absorption at high pressure. More interestingly, after depressurization to ambient pressure, the optimized band gap survives with a minimum value of 1.87 eV accompanied by enhanced photoelectric responsivity. In situ synchrotron x-ray diffraction and Raman spectra suggest that the tunable band gap originates from irreversible pressure-induced amorphization with the assistance of vacancies for $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$. The collaborative approach of introducing deficiency and pressure treatment adopted here shows the ability to engineer the band gap continuously over a prominently wider region than that for the single band-gap-narrowing technique, and thus, enhances the photoelectric performance for broadened semiconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦思遗落完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
zyx完成签到,获得积分10
1秒前
简7发布了新的文献求助30
1秒前
佐zzz发布了新的文献求助10
2秒前
lxl发布了新的文献求助10
3秒前
3秒前
上官若男应助ZY采纳,获得10
3秒前
4秒前
5秒前
热情的远锋完成签到 ,获得积分10
6秒前
6秒前
浮游应助晴子采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
兰兰不懒发布了新的文献求助10
10秒前
Hello应助佐zzz采纳,获得10
10秒前
11秒前
老实的斌完成签到 ,获得积分10
12秒前
2425完成签到,获得积分10
13秒前
田様应助专一的戒指采纳,获得10
14秒前
fengwanru发布了新的文献求助10
14秒前
维尼熊完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
铅笔刀完成签到,获得积分10
19秒前
淡淡萍完成签到,获得积分10
19秒前
yilia完成签到,获得积分10
20秒前
丘比特应助guo采纳,获得30
21秒前
JW完成签到,获得积分10
23秒前
huihui完成签到,获得积分10
25秒前
快乐的寄容完成签到 ,获得积分10
28秒前
30秒前
30秒前
真君山山长完成签到,获得积分10
32秒前
MYunn完成签到,获得积分10
33秒前
lokiyyy发布了新的文献求助10
34秒前
34秒前
36秒前
深情安青应助彭瞻采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700