Pressure-Optimized Band Gap and Enhanced Photoelectric Response of Graphitic Carbon Nitride with Nitrogen Vacancies

带隙 光电效应 材料科学 吸收(声学) 半导体 氮化物 拉曼光谱 氮气 光电子学 凝聚态物理 分析化学(期刊) 纳米技术 光学 物理 化学 复合材料 量子力学 图层(电子) 色谱法
作者
Peng Cheng,Deyuan Yao,Jinwei Yan,Tingting Ye,Huanhuan Liu,Hong Zeng,Xiaomei Pan,Genqiang Zhang,Junfeng Ding
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (2) 被引量:12
标识
DOI:10.1103/physrevapplied.19.024048
摘要

Graphitic carbon nitride ($g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$) shows favorable performance as a photocatalyst and has attracted widespread attention in recent years. As its wide band gap of 2.70 eV limits light absorption in the visible range, many efforts have been made to optimize the band gap. In this report, pressure is used to engineer the band gap and photoelectric response of nitrogen-deficient $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$ nanoflakes. The band gap of the sample is first narrowed to 2.40 eV due to the introduction of nitrogen vacancies and then further narrowed to 1.70 eV by pressure, which is the lowest value reported in the literature for undoped $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$. Accordingly, the photoelectric response increases by nearly 50% because of the enhanced light absorption at high pressure. More interestingly, after depressurization to ambient pressure, the optimized band gap survives with a minimum value of 1.87 eV accompanied by enhanced photoelectric responsivity. In situ synchrotron x-ray diffraction and Raman spectra suggest that the tunable band gap originates from irreversible pressure-induced amorphization with the assistance of vacancies for $g$-${\mathrm{C}}_{3}{\mathrm{N}}_{4}$. The collaborative approach of introducing deficiency and pressure treatment adopted here shows the ability to engineer the band gap continuously over a prominently wider region than that for the single band-gap-narrowing technique, and thus, enhances the photoelectric performance for broadened semiconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助jg采纳,获得10
刚刚
刚刚
3秒前
4秒前
4秒前
4秒前
茹茹发布了新的文献求助10
5秒前
一号位完成签到,获得积分20
5秒前
聆听发布了新的文献求助10
5秒前
5秒前
能干彤完成签到,获得积分10
6秒前
越旻发布了新的文献求助10
8秒前
下次一定发布了新的文献求助10
8秒前
9秒前
laifeihong发布了新的文献求助50
10秒前
Jessica完成签到,获得积分0
10秒前
量子星尘发布了新的文献求助10
10秒前
出其东门完成签到,获得积分10
10秒前
核动力驴应助霍元甲采纳,获得10
11秒前
上官若男应助霍元甲采纳,获得10
11秒前
Mida应助开花不铁树采纳,获得10
14秒前
打打应助chemlink采纳,获得10
17秒前
17秒前
鱻雩关注了科研通微信公众号
19秒前
细心的思远完成签到,获得积分20
20秒前
爆米花应助ap2010采纳,获得30
20秒前
22秒前
22秒前
李健的小迷弟应助isabellae采纳,获得10
22秒前
开花不铁树完成签到,获得积分20
23秒前
24秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
24秒前
24秒前
25秒前
Criminology34应助二五九采纳,获得10
27秒前
晚星发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
29秒前
星空发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690