Deep Learning of Videourodynamics to Classify Bladder Dysfunction Severity in Patients With Spina Bifida

医学 脊柱裂 逼尿肌括约肌协同失调 卡帕 协同失调 外科 括约肌 神经系统疾病 中枢神经系统疾病 语言学 哲学
作者
John Weaver,Madalyne Martin-Olenski,Joseph Logan,Reiley Broms,Maria Antony,Jason P. Van Batavia,Dana A. Weiss,Christopher Long,Ariana L. Smith,Stephen A. Zderic,Jing Huang,Yong Fan,Gregory E. Tasian
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:209 (5): 994-1003 被引量:9
标识
DOI:10.1097/ju.0000000000003267
摘要

Urologists rely heavily on videourodynamics to identify patients with neurogenic bladders who are at risk of upper tract injury, but their interpretation has high interobserver variability. Our objective was to develop deep learning models of videourodynamics studies to categorize severity of bladder dysfunction.We performed a cross-sectional study of patients aged 2 months to 28 years with spina bifida who underwent videourodynamics at a single institution between 2019 and 2021. The outcome was degree of bladder dysfunction, defined as none/mild, moderate, and severe, defined by a panel of 5 expert reviewers. Reviewers considered factors that increase the risk of upper tract injury, such as poor compliance, elevated detrusor leak point pressure, and detrusor sphincter dyssynergia, in determining bladder dysfunction severity. We built 4 models to predict severity of bladder dysfunction: (1) a random forest clinical model using prospectively collected clinical data from videourodynamics studies, (2) a deep learning convolutional neural network of raw data from the volume-pressure recordings, (3) a deep learning imaging model of fluoroscopic images, (4) an ensemble model averaging the risk probabilities of the volume-pressure and fluoroscopic models.Among 306 videourodynamics studies, the accuracy and weighted kappa of the ensemble model classification of bladder dysfunction when at least 75% expected bladder capacity was reached were 70% (95% CI 66%,76%) and 0.54 (moderate agreement), respectively. The performance of the clinical model built from data extracted by pediatric urologists was the poorest with an accuracy of 61% (55%, 66%) and a weighted kappa of 0.37.Our models built from urodynamic pressure-volume tracings and fluoroscopic images were able to automatically classify bladder dysfunction with moderately high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英姑应助滴滴采纳,获得10
2秒前
夏天来了发布了新的文献求助10
2秒前
yjx发布了新的文献求助10
2秒前
2秒前
科研杰完成签到,获得积分10
2秒前
2秒前
先玩了玉完成签到,获得积分20
3秒前
完美世界应助奋斗映寒采纳,获得10
5秒前
5秒前
糖果屋发布了新的文献求助10
5秒前
6秒前
甜蜜星星发布了新的文献求助10
6秒前
wyx发布了新的文献求助10
6秒前
先玩了玉发布了新的文献求助20
6秒前
6秒前
小玲子发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
范博发布了新的文献求助10
8秒前
cyndi发布了新的文献求助10
9秒前
yjx完成签到,获得积分20
9秒前
所所应助清脆曼岚采纳,获得10
11秒前
蹦跶发布了新的文献求助10
11秒前
贰鸟应助英俊的吉祥采纳,获得20
11秒前
王云豆发布了新的文献求助10
12秒前
彭于晏应助三三四采纳,获得10
12秒前
12秒前
所所应助老吴采纳,获得10
12秒前
文静三颜发布了新的文献求助10
13秒前
Winkhl发布了新的文献求助10
14秒前
14秒前
激昂的背包完成签到,获得积分10
14秒前
烟花应助wyx采纳,获得10
16秒前
www发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554493
求助须知:如何正确求助?哪些是违规求助? 3130313
关于积分的说明 9386036
捐赠科研通 2829580
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715480