A total variation prior unrolling approach for computed tomography reconstruction

计算机科学 迭代重建 卷积神经网络 人工智能 特征(语言学) 循环展开 深度学习 人工神经网络 模式识别(心理学) 算法 计算机视觉 哲学 语言学 编译程序 程序设计语言
作者
Pengcheng Zhang,Shuhui Ren,Yi Liu,Zhiguo Gui,Hong Shangguan,Yanling Wang,Shu Hu,Yang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2816-2834 被引量:2
标识
DOI:10.1002/mp.16307
摘要

Abstract Background With the rapid development of deep learning technology, deep neural networks can effectively enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural networks. Purpose In conventional IR methods, the prior terms play a vital role in improving the visual quality of reconstructed images. Unrolling the hand‐crafted prior terms to CNNs may provide a more specialized unrolling approach to further improve the performance of CT reconstruction. In this work, a primal‐dual network (PD‐Net) was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively preserves the image edges and textures in the reconstructed images. Methods By further deriving the Chambolle–Pock (CP) algorithm instance for CT reconstruction, we discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted divergences of the reconstructed image to guarantee that the CNNs’ results were the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in the PD‐Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be directly unrolled to CNNs. Results The datasets from the Low‐Dose CT Image and Projection Data and the Piglet dataset were employed to assess the effectiveness of our proposed PD‐Net. Compared with conventional CT reconstruction methods, our proposed method effectively preserves the structural and textural information in reference to ground truth. Conclusions The experimental results show that our proposed PD‐Net framework is feasible for the implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural network, this study is intended to inspire further development of unrolling approaches by enabling the direct unrolling of hand‐crafted prior terms to CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赵哈哈完成签到,获得积分10
刚刚
1秒前
2秒前
小柠檬发布了新的文献求助10
2秒前
he发布了新的文献求助10
2秒前
2秒前
CodeCraft应助啵啵采纳,获得10
2秒前
3秒前
otaro发布了新的文献求助30
3秒前
贝利亚发布了新的文献求助10
3秒前
清脆的台灯完成签到,获得积分10
4秒前
范范完成签到 ,获得积分10
4秒前
星辰大海应助starry采纳,获得10
5秒前
科研通AI5应助Xxxnnian采纳,获得30
5秒前
执着的小蘑菇完成签到,获得积分10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
顺顺发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
maox1aoxin应助科研通管家采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
8秒前
8秒前
时尚的书易给时尚的书易的求助进行了留言
8秒前
南北完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678