A total variation prior unrolling approach for computed tomography reconstruction

计算机科学 迭代重建 卷积神经网络 人工智能 特征(语言学) 循环展开 深度学习 人工神经网络 模式识别(心理学) 算法 计算机视觉 哲学 语言学 编译程序 程序设计语言
作者
Pengcheng Zhang,Shuhui Ren,Yi Liu,Zhiguo Gui,Hong Shangguan,Yanling Wang,Shu Hu,Yang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2816-2834 被引量:2
标识
DOI:10.1002/mp.16307
摘要

Abstract Background With the rapid development of deep learning technology, deep neural networks can effectively enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural networks. Purpose In conventional IR methods, the prior terms play a vital role in improving the visual quality of reconstructed images. Unrolling the hand‐crafted prior terms to CNNs may provide a more specialized unrolling approach to further improve the performance of CT reconstruction. In this work, a primal‐dual network (PD‐Net) was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively preserves the image edges and textures in the reconstructed images. Methods By further deriving the Chambolle–Pock (CP) algorithm instance for CT reconstruction, we discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted divergences of the reconstructed image to guarantee that the CNNs’ results were the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in the PD‐Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be directly unrolled to CNNs. Results The datasets from the Low‐Dose CT Image and Projection Data and the Piglet dataset were employed to assess the effectiveness of our proposed PD‐Net. Compared with conventional CT reconstruction methods, our proposed method effectively preserves the structural and textural information in reference to ground truth. Conclusions The experimental results show that our proposed PD‐Net framework is feasible for the implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural network, this study is intended to inspire further development of unrolling approaches by enabling the direct unrolling of hand‐crafted prior terms to CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿司匹林发布了新的文献求助10
2秒前
Ava应助优美的背包采纳,获得10
2秒前
蔺建薇完成签到,获得积分10
2秒前
落寞傲南发布了新的文献求助10
2秒前
sun完成签到,获得积分20
4秒前
不爱科研完成签到 ,获得积分10
5秒前
杨志坚发布了新的文献求助10
5秒前
腾腾完成签到,获得积分10
5秒前
oceanao应助Jene采纳,获得10
7秒前
CodeCraft应助ademwy采纳,获得10
9秒前
10秒前
隐形的大有完成签到,获得积分10
10秒前
Akim应助腾腾采纳,获得10
10秒前
10秒前
123完成签到 ,获得积分10
11秒前
优美的背包完成签到,获得积分10
12秒前
xxx发布了新的文献求助10
13秒前
金箍棒完成签到,获得积分10
15秒前
心静如水发布了新的文献求助10
15秒前
15秒前
大豆终结者完成签到,获得积分10
17秒前
17秒前
18秒前
求知若渴完成签到,获得积分10
20秒前
li完成签到,获得积分10
21秒前
GAO完成签到,获得积分10
21秒前
华仔应助落寞傲南采纳,获得10
21秒前
几酌应助JL采纳,获得10
24秒前
黎明完成签到,获得积分10
24秒前
qks完成签到 ,获得积分10
25秒前
爆米花应助Jeffery426采纳,获得10
25秒前
25秒前
26秒前
26秒前
leoan完成签到,获得积分10
28秒前
Orange应助科研民工采纳,获得10
29秒前
ademwy发布了新的文献求助10
30秒前
31秒前
karenli发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162863
求助须知:如何正确求助?哪些是违规求助? 2813883
关于积分的说明 7902296
捐赠科研通 2473504
什么是DOI,文献DOI怎么找? 1316868
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187