亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A total variation prior unrolling approach for computed tomography reconstruction

计算机科学 迭代重建 卷积神经网络 人工智能 特征(语言学) 循环展开 深度学习 人工神经网络 模式识别(心理学) 算法 计算机视觉 哲学 语言学 编译程序 程序设计语言
作者
Pengcheng Zhang,Shuhui Ren,Yi Liu,Zhiguo Gui,Hong Shangguan,Yanling Wang,Shu Hu,Yang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2816-2834 被引量:2
标识
DOI:10.1002/mp.16307
摘要

Abstract Background With the rapid development of deep learning technology, deep neural networks can effectively enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural networks. Purpose In conventional IR methods, the prior terms play a vital role in improving the visual quality of reconstructed images. Unrolling the hand‐crafted prior terms to CNNs may provide a more specialized unrolling approach to further improve the performance of CT reconstruction. In this work, a primal‐dual network (PD‐Net) was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively preserves the image edges and textures in the reconstructed images. Methods By further deriving the Chambolle–Pock (CP) algorithm instance for CT reconstruction, we discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted divergences of the reconstructed image to guarantee that the CNNs’ results were the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in the PD‐Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be directly unrolled to CNNs. Results The datasets from the Low‐Dose CT Image and Projection Data and the Piglet dataset were employed to assess the effectiveness of our proposed PD‐Net. Compared with conventional CT reconstruction methods, our proposed method effectively preserves the structural and textural information in reference to ground truth. Conclusions The experimental results show that our proposed PD‐Net framework is feasible for the implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural network, this study is intended to inspire further development of unrolling approaches by enabling the direct unrolling of hand‐crafted prior terms to CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chan完成签到,获得积分10
16秒前
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
19秒前
36秒前
爆米花应助泡泡采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
sonya发布了新的文献求助10
3分钟前
3分钟前
按摩头了完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
Liufgui应助MOFS采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
Liufgui应助MOFS采纳,获得10
5分钟前
5分钟前
6分钟前
无私追命完成签到,获得积分10
6分钟前
无私追命发布了新的文献求助10
6分钟前
佳佳应助无私追命采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
白嫖论文完成签到 ,获得积分10
7分钟前
jyy完成签到,获得积分10
7分钟前
7分钟前
桃子完成签到 ,获得积分10
8分钟前
不去明知山完成签到 ,获得积分10
8分钟前
桃子牛肉酱完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995492
求助须知:如何正确求助?哪些是违规求助? 3535269
关于积分的说明 11267238
捐赠科研通 3275083
什么是DOI,文献DOI怎么找? 1806530
邀请新用户注册赠送积分活动 883349
科研通“疑难数据库(出版商)”最低求助积分说明 809782