Comparison of Data-Driven Site Characterization Methods through Benchmarking: Methodological and Application Aspects

标杆管理 水准点(测量) 计算机科学 领域(数学) 利用 机器学习 岩土工程 透视图(图形) 数据挖掘 过程(计算) 数据科学 克里金 人工智能 工业工程 工程类 土木工程 地质学 数学 计算机安全 操作系统 业务 营销 大地测量学 纯数学
作者
Takayuki Shuku,Kok‐Kwang Phoon
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:9 (2) 被引量:15
标识
DOI:10.1061/ajrua6.rueng-977
摘要

Site characterization is one of the most crucial steps for decision making in geotechnical engineering and to the fullest extent possible should be conducted based on objective data. The current reliance on engineering judgment to interpret data directly cannot exploit the rapid growth of data, machine learning, and other digital technologies. Data-driven site characterization (DDSC) has received much attention in an emerging field called data-centric geotechnics, because a knowledge of the ground is fundamental to geotechnical engineering. As a result, many DDSC methods have been developed recently. Differences and similarities between DDSC methods, however, have not been well studied in terms of methodological and application aspects. This paper proposes a comparison between three emerging DDSC methods from these methodological and application perspectives: (1) geotechnical lasso (Glasso), (2) geotechnical lasso with basis-functions (Glasso-BFs), and (3) Gaussian process regression (GPR). From a methodological perspective, this paper presents a unified Bayesian framework to derive these DDSC methods, in order to shed light on the methodological similarities and differences. From the application perspective, the prediction accuracy for the validation dataset and runtime cost of these three DDSC methods were compared through benchmarking. The differences in performance can be better understood within the unified framework. This paper further proposes a new benchmark involving complex intermixing of soil types, to test the three methods under more realistic and challenging field conditions, although the training and validation datasets remain synthetic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ohio完成签到 ,获得积分20
1秒前
1秒前
111111111完成签到,获得积分10
2秒前
起风了发布了新的文献求助10
4秒前
6秒前
英勇沧海给英勇沧海的求助进行了留言
7秒前
10秒前
安静一曲完成签到 ,获得积分10
14秒前
yaoyao发布了新的文献求助10
16秒前
zhizhi2021发布了新的文献求助10
17秒前
19秒前
22秒前
李爱国应助123采纳,获得10
22秒前
烟雨发布了新的文献求助10
24秒前
张倩完成签到,获得积分10
27秒前
烟花应助坚强黎昕采纳,获得10
28秒前
丰富赛凤发布了新的文献求助10
28秒前
lulu发布了新的文献求助10
29秒前
老鼠爱吃fish完成签到,获得积分10
29秒前
曾培发布了新的文献求助10
29秒前
拥有八根情丝完成签到,获得积分10
30秒前
起风了完成签到,获得积分20
30秒前
33秒前
33秒前
岗吉完成签到,获得积分10
34秒前
乙酸乙酯会挥发完成签到,获得积分10
35秒前
36秒前
fwda1000完成签到 ,获得积分10
36秒前
Jasper应助lulu采纳,获得30
36秒前
37秒前
英勇沧海发布了新的文献求助10
37秒前
37秒前
HonamC完成签到,获得积分10
40秒前
烟雨完成签到,获得积分10
40秒前
我是老大应助科研通管家采纳,获得10
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
英俊的铭应助科研通管家采纳,获得10
41秒前
bkagyin应助科研通管家采纳,获得10
41秒前
大模型应助科研通管家采纳,获得10
41秒前
我是老大应助科研通管家采纳,获得10
41秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212316
求助须知:如何正确求助?哪些是违规求助? 2861197
关于积分的说明 8127562
捐赠科研通 2527165
什么是DOI,文献DOI怎么找? 1360756
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615658