金属有机骨架
催化作用
纳米技术
合理设计
光伏
反应性(心理学)
锆
材料科学
化学
能量转换
光伏系统
有机化学
吸附
物理
病理
热力学
生物
医学
替代医学
生态学
作者
Samuel C. Moore,Michael R. Smith,James L. Trettin,Rachel A. Yang,Michele L. Sarazen
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-02-13
卷期号:8 (3): 1397-1407
被引量:26
标识
DOI:10.1021/acsenergylett.2c02893
摘要
Defects in metal–organic frameworks (MOFs) primarily manifest as missing linkers or metal nodes induced through synthesis, post-synthetic modification, and/or exposure to reaction conditions. By changing the nature of active site(s) and perturbing crystalline frameworks, defects confer physicochemical alterations to MOF catalysts that may promote or inhibit intrinsic reactivity, electron transfer and excitation, and mass transport. However, the complexity and dynamic character of defects often obfuscate the structure–function relations needed to permit rational catalyst design. Here, highlights of recent studies examining the impact of MOF defects in thermo-, photo-, and electrocatalytic systems pertinent to energy applications demonstrate progress toward identifying defect impacts on MOF catalysis, particularly for widely studied zirconium-based frameworks. Moreover, the combination of ex situ and operando/in situ defect identification and quantification will be paramount in future research to improve the mechanistic understanding of MOF-catalyzed systems for energy conversion but also extends to MOF energy storage, photovoltaics, and gas separations/storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI