Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm

参数统计 过程(计算) 抗压强度 胶凝的 适应性 计算机科学 人工智能 预测建模 机器学习 算法 材料科学 数学 水泥 统计 复合材料 操作系统 生物 生态学
作者
M. Aminul Haque,Bing Chen,Abul Kashem,Tanvir Qureshi,A. A. Masrur Ahmed
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105547-105547 被引量:48
标识
DOI:10.1016/j.mtcomm.2023.105547
摘要

Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leucalypt完成签到,获得积分10
刚刚
整整完成签到,获得积分10
1秒前
十一苗完成签到 ,获得积分10
1秒前
GreenV完成签到,获得积分10
1秒前
小范同学发布了新的文献求助30
1秒前
Jaslin完成签到,获得积分10
1秒前
大成子完成签到,获得积分10
1秒前
彭于晏应助gaogao采纳,获得10
2秒前
李雨完成签到,获得积分10
2秒前
wuta完成签到,获得积分10
2秒前
Akim应助超表面采纳,获得10
2秒前
2秒前
A_Caterpillar完成签到,获得积分10
2秒前
3秒前
香蕉诗蕊应助莫愁采纳,获得10
4秒前
mengna完成签到,获得积分10
4秒前
温纲完成签到,获得积分10
5秒前
Amber完成签到,获得积分10
5秒前
6秒前
大力牌皮揣子完成签到 ,获得积分10
6秒前
赵西里完成签到,获得积分10
6秒前
expuery完成签到,获得积分10
7秒前
Dellamoffy完成签到,获得积分10
7秒前
Glileo完成签到 ,获得积分10
7秒前
7秒前
熊猫完成签到,获得积分10
7秒前
xuxuxuuxuxux完成签到,获得积分10
8秒前
阔达的海完成签到,获得积分10
8秒前
loosewires发布了新的文献求助10
8秒前
8秒前
dm完成签到,获得积分10
9秒前
9秒前
chen完成签到,获得积分10
9秒前
闲鸢完成签到,获得积分10
9秒前
10秒前
朴素梦蕊完成签到 ,获得积分10
10秒前
youyating完成签到,获得积分10
10秒前
熊猫发布了新的文献求助20
10秒前
嘻嘻完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570