Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm

参数统计 过程(计算) 抗压强度 胶凝的 适应性 计算机科学 人工智能 预测建模 机器学习 算法 材料科学 数学 水泥 统计 复合材料 操作系统 生物 生态学
作者
M. Aminul Haque,Bing Chen,Abul Kashem,Tanvir Qureshi,A. A. Masrur Ahmed
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 105547-105547 被引量:48
标识
DOI:10.1016/j.mtcomm.2023.105547
摘要

Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙橙橙橙完成签到,获得积分10
1秒前
丘比特应助毛毛弟采纳,获得10
1秒前
1秒前
no1isme完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
英勇的沛春完成签到 ,获得积分10
3秒前
隐形曼青应助孔大漂亮采纳,获得10
3秒前
丛士乔完成签到,获得积分10
3秒前
3秒前
kiki发布了新的文献求助30
4秒前
cooper完成签到 ,获得积分10
4秒前
HarryQ完成签到,获得积分10
5秒前
wxj发布了新的文献求助10
5秒前
咕咕嘎嘎完成签到,获得积分10
5秒前
6秒前
俭朴的可冥完成签到,获得积分10
6秒前
Yang_728发布了新的文献求助10
6秒前
科研通AI5应助岛屿采纳,获得10
6秒前
Cxxxxxxv完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助50
8秒前
8秒前
TIPHA发布了新的文献求助10
8秒前
艾欧大贝发布了新的文献求助10
9秒前
赘婿应助XYT采纳,获得10
9秒前
科研通AI5应助SONG采纳,获得10
9秒前
9秒前
9秒前
美好向日葵完成签到,获得积分10
10秒前
11秒前
彭于晏应助Sarah采纳,获得10
11秒前
深情安青应助激情的一斩采纳,获得10
11秒前
火星上如松完成签到 ,获得积分10
12秒前
孔大漂亮发布了新的文献求助10
12秒前
Huang_Liuying应助毛毛弟采纳,获得10
13秒前
13秒前
13秒前
你今天学了多少完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917