Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm

参数统计 过程(计算) 抗压强度 胶凝的 适应性 计算机科学 人工智能 预测建模 机器学习 算法 材料科学 数学 水泥 统计 复合材料 操作系统 生物 生态学
作者
M. Aminul Haque,Bing Chen,Abul Kashem,Tanvir Qureshi,A. A. Masrur Ahmed
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 105547-105547 被引量:48
标识
DOI:10.1016/j.mtcomm.2023.105547
摘要

Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
2秒前
wenni完成签到,获得积分10
3秒前
等光来完成签到,获得积分10
3秒前
无花果应助时尚俊驰采纳,获得10
4秒前
粗心的新之完成签到,获得积分10
4秒前
沉默的小天鹅应助Fonseca采纳,获得10
4秒前
cccui发布了新的文献求助10
4秒前
海豚有海完成签到 ,获得积分10
5秒前
哈温完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
916发布了新的文献求助50
7秒前
Unbelievable完成签到,获得积分10
7秒前
津津乐道完成签到,获得积分10
8秒前
yoyo完成签到 ,获得积分10
8秒前
8秒前
erhao完成签到,获得积分10
9秒前
龚幻梦发布了新的文献求助10
9秒前
10秒前
小花发布了新的文献求助10
10秒前
11秒前
三石发布了新的文献求助10
11秒前
生姜发布了新的文献求助10
12秒前
坛坛发布了新的文献求助10
12秒前
东皇太憨完成签到,获得积分10
12秒前
我是老大应助欢欢采纳,获得10
12秒前
Sunthief发布了新的文献求助30
13秒前
yusuf完成签到,获得积分10
13秒前
rookieLi应助kento采纳,获得30
13秒前
传奇3应助li采纳,获得10
13秒前
bluesky完成签到,获得积分10
14秒前
王平完成签到,获得积分10
15秒前
留胡子的白风完成签到,获得积分10
15秒前
我是老大应助大叉烧采纳,获得10
15秒前
16秒前
16秒前
虎虎生威完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653