Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm

参数统计 过程(计算) 抗压强度 胶凝的 适应性 计算机科学 人工智能 预测建模 机器学习 算法 材料科学 数学 水泥 统计 复合材料 操作系统 生物 生态学
作者
M. Aminul Haque,Bing Chen,Abul Kashem,Tanvir Qureshi,A. A. Masrur Ahmed
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105547-105547 被引量:48
标识
DOI:10.1016/j.mtcomm.2023.105547
摘要

Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
v3688e完成签到,获得积分10
刚刚
刚刚
12234完成签到 ,获得积分10
1秒前
Daisy发布了新的文献求助10
1秒前
1秒前
浮游应助Dora采纳,获得10
2秒前
桂鱼完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
wuyoung完成签到,获得积分10
2秒前
嗯哼完成签到,获得积分20
3秒前
moon完成签到,获得积分10
4秒前
丘比特应助冒尖竹笋儿采纳,获得10
4秒前
义气的钥匙完成签到,获得积分10
4秒前
领导范儿应助天天小女孩采纳,获得10
4秒前
天天快乐应助ri_290采纳,获得10
4秒前
蓝蓝发布了新的文献求助10
5秒前
5秒前
5秒前
ding应助htzy采纳,获得10
5秒前
feiyuzhang发布了新的文献求助10
6秒前
酷波er应助嗯嗯哈哈采纳,获得10
6秒前
Arthur Zhu完成签到,获得积分10
6秒前
小月亮完成签到,获得积分10
6秒前
6秒前
zgrmws应助ABC的风格采纳,获得10
8秒前
lxsll完成签到,获得积分10
9秒前
复杂的凝冬完成签到,获得积分10
9秒前
Ysdanz发布了新的文献求助10
9秒前
9秒前
扬子完成签到,获得积分10
9秒前
9秒前
Sene完成签到,获得积分10
10秒前
三余完成签到,获得积分10
10秒前
天天小女孩完成签到,获得积分10
10秒前
ClaudiaCY完成签到,获得积分10
11秒前
共享精神应助夕荀采纳,获得10
12秒前
12秒前
hbsand完成签到,获得积分10
12秒前
酷波er应助从容从灵采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997