How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis

人气 心理学 脚本语言 Python(编程语言) 描绘 美学 社会心理学 人工智能 计算机科学 艺术 视觉艺术 操作系统
作者
Muna Sharma,Yilang Peng
出处
期刊:Health Communication [Informa]
卷期号:39 (3): 577-591 被引量:5
标识
DOI:10.1080/10410236.2023.2175635
摘要

ABSTRACTSocial media have become an important source where people are exposed to visual representations of foods. This study aims to understand what content factors contribute to the popularity of food images on Instagram. We collected 53,894 images from 90 popular food influencer accounts on Instagram over two years. Applying computer vision methods, we investigated the effects of visual aesthetics and calorie density of foods on audience engagement (i.e. likes, comments) as well as if the effects of visual aesthetics varied by calorie density. Our results showed that both visual aesthetics and calorie density were important predictors of image popularity. The use of arousing, warm colors such as red, orange, and yellow, feature complexity, and repetition predicted higher likes, whereas brightness, colorfulness, and compositional complexity acted reversely. A similar pattern was observed for comments. The calorie density of foods in images positively predicted likes and comments. Also, the effects of visual aesthetics varied by calorie content and were more pronounced for low-calorie images. Health practitioners who plan to harness the power of social media to encourage certain dietary behaviors should take visual aesthetics into account when designing persuasive messages and campaigns. Code availability statementThe Python scripts to conduct computer vision analysis described in this manuscript are available at https://github.com/yilangpeng/food-image-instagram. The Python Package Athec (https://github.com/yilangpeng/Athec) was used to conduct the analysis of aesthetic features (e.g., brightness, color percentages). A detailed description can be found in Peng (Citation2022).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10410236.2023.2175635.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ArclightMoon发布了新的文献求助20
1秒前
1秒前
李幺幺完成签到,获得积分20
1秒前
2秒前
2秒前
小5完成签到,获得积分10
3秒前
小化发布了新的文献求助10
3秒前
3秒前
4秒前
元谷雪应助科研通管家采纳,获得10
6秒前
科研小新发布了新的文献求助10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
AN应助科研通管家采纳,获得30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
侯总应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得20
6秒前
元谷雪应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
桐桐应助一寒采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
情怀应助QQ采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
成就凡双应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
zh发布了新的文献求助10
7秒前
邓邓邓妮妮子完成签到,获得积分10
8秒前
入戏发布了新的文献求助10
8秒前
元舒甜发布了新的文献求助30
9秒前
李华完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527