How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis

人气 心理学 脚本语言 Python(编程语言) 描绘 美学 社会心理学 人工智能 计算机科学 艺术 视觉艺术 操作系统
作者
Muna Sharma,Yilang Peng
出处
期刊:Health Communication [Informa]
卷期号:39 (3): 577-591 被引量:5
标识
DOI:10.1080/10410236.2023.2175635
摘要

ABSTRACTSocial media have become an important source where people are exposed to visual representations of foods. This study aims to understand what content factors contribute to the popularity of food images on Instagram. We collected 53,894 images from 90 popular food influencer accounts on Instagram over two years. Applying computer vision methods, we investigated the effects of visual aesthetics and calorie density of foods on audience engagement (i.e. likes, comments) as well as if the effects of visual aesthetics varied by calorie density. Our results showed that both visual aesthetics and calorie density were important predictors of image popularity. The use of arousing, warm colors such as red, orange, and yellow, feature complexity, and repetition predicted higher likes, whereas brightness, colorfulness, and compositional complexity acted reversely. A similar pattern was observed for comments. The calorie density of foods in images positively predicted likes and comments. Also, the effects of visual aesthetics varied by calorie content and were more pronounced for low-calorie images. Health practitioners who plan to harness the power of social media to encourage certain dietary behaviors should take visual aesthetics into account when designing persuasive messages and campaigns. Code availability statementThe Python scripts to conduct computer vision analysis described in this manuscript are available at https://github.com/yilangpeng/food-image-instagram. The Python Package Athec (https://github.com/yilangpeng/Athec) was used to conduct the analysis of aesthetic features (e.g., brightness, color percentages). A detailed description can be found in Peng (Citation2022).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10410236.2023.2175635.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡心亭完成签到 ,获得积分10
1秒前
笨笨忘幽完成签到,获得积分10
6秒前
chrom完成签到 ,获得积分10
15秒前
清爽的柚子完成签到 ,获得积分10
16秒前
糖宝完成签到 ,获得积分10
18秒前
笨笨小刺猬完成签到,获得积分10
21秒前
27秒前
小马甲应助科研通管家采纳,获得10
32秒前
salty完成签到 ,获得积分0
49秒前
Never stall完成签到 ,获得积分10
50秒前
滕皓轩完成签到 ,获得积分10
53秒前
55秒前
呵呵贺哈完成签到 ,获得积分10
55秒前
戈多发布了新的文献求助10
1分钟前
ycw7777完成签到,获得积分10
1分钟前
飞鱼z完成签到 ,获得积分10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
WXM完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
1分钟前
CLTTT完成签到,获得积分10
1分钟前
Legend_完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
萝卜干发布了新的文献求助10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
qiaobaqiao完成签到 ,获得积分10
1分钟前
燕山堂完成签到 ,获得积分0
1分钟前
1分钟前
Young完成签到 ,获得积分10
1分钟前
2分钟前
铜豌豆完成签到 ,获得积分10
2分钟前
苏子轩完成签到 ,获得积分10
2分钟前
future完成签到 ,获得积分10
2分钟前
平常安雁完成签到 ,获得积分10
2分钟前
锋feng完成签到 ,获得积分10
2分钟前
老迟到的雪曼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LIN发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353569
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8683992
捐赠科研通 2659598
什么是DOI,文献DOI怎么找? 1456286
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665049