亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis

人气 心理学 脚本语言 Python(编程语言) 描绘 美学 社会心理学 人工智能 计算机科学 艺术 视觉艺术 操作系统
作者
Muna Sharma,Yilang Peng
出处
期刊:Health Communication [Informa]
卷期号:39 (3): 577-591 被引量:5
标识
DOI:10.1080/10410236.2023.2175635
摘要

ABSTRACTSocial media have become an important source where people are exposed to visual representations of foods. This study aims to understand what content factors contribute to the popularity of food images on Instagram. We collected 53,894 images from 90 popular food influencer accounts on Instagram over two years. Applying computer vision methods, we investigated the effects of visual aesthetics and calorie density of foods on audience engagement (i.e. likes, comments) as well as if the effects of visual aesthetics varied by calorie density. Our results showed that both visual aesthetics and calorie density were important predictors of image popularity. The use of arousing, warm colors such as red, orange, and yellow, feature complexity, and repetition predicted higher likes, whereas brightness, colorfulness, and compositional complexity acted reversely. A similar pattern was observed for comments. The calorie density of foods in images positively predicted likes and comments. Also, the effects of visual aesthetics varied by calorie content and were more pronounced for low-calorie images. Health practitioners who plan to harness the power of social media to encourage certain dietary behaviors should take visual aesthetics into account when designing persuasive messages and campaigns. Code availability statementThe Python scripts to conduct computer vision analysis described in this manuscript are available at https://github.com/yilangpeng/food-image-instagram. The Python Package Athec (https://github.com/yilangpeng/Athec) was used to conduct the analysis of aesthetic features (e.g., brightness, color percentages). A detailed description can be found in Peng (Citation2022).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10410236.2023.2175635.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
2秒前
3秒前
欢歌笑语发布了新的文献求助10
3秒前
良夜眉峰完成签到,获得积分10
4秒前
FashionBoy应助wangayting采纳,获得10
7秒前
gggghhhh完成签到 ,获得积分10
7秒前
psykyo发布了新的文献求助30
10秒前
Rocks完成签到,获得积分10
16秒前
小蘑菇应助psykyo采纳,获得10
18秒前
马子茹发布了新的文献求助10
19秒前
20秒前
萝卜卷心菜完成签到 ,获得积分10
24秒前
背后凌翠发布了新的文献求助10
25秒前
yy完成签到 ,获得积分10
26秒前
英俊的铭应助yy采纳,获得10
31秒前
Lucas应助ZZZ采纳,获得10
33秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
33秒前
清爽冬莲完成签到 ,获得积分10
33秒前
34秒前
领导范儿应助坚强的唇膏采纳,获得10
34秒前
涛涛完成签到,获得积分10
37秒前
tt完成签到 ,获得积分10
38秒前
冷酷飞飞完成签到 ,获得积分10
38秒前
呜呜呜发布了新的文献求助10
40秒前
46秒前
柳crystal完成签到,获得积分10
47秒前
49秒前
呜呜呜完成签到,获得积分10
51秒前
Sunshine完成签到,获得积分10
53秒前
Privacy完成签到 ,获得积分10
53秒前
56秒前
57秒前
生动的沛白完成签到 ,获得积分10
58秒前
无谓发布了新的文献求助10
1分钟前
英姑应助songjiatian采纳,获得10
1分钟前
我是老大应助小巧静珊采纳,获得10
1分钟前
Dawn完成签到,获得积分10
1分钟前
执着秀发完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
moci123完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209