How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis

人气 心理学 脚本语言 Python(编程语言) 描绘 美学 社会心理学 人工智能 计算机科学 艺术 视觉艺术 操作系统
作者
Muna Sharma,Yilang Peng
出处
期刊:Health Communication [Informa]
卷期号:39 (3): 577-591 被引量:5
标识
DOI:10.1080/10410236.2023.2175635
摘要

ABSTRACTSocial media have become an important source where people are exposed to visual representations of foods. This study aims to understand what content factors contribute to the popularity of food images on Instagram. We collected 53,894 images from 90 popular food influencer accounts on Instagram over two years. Applying computer vision methods, we investigated the effects of visual aesthetics and calorie density of foods on audience engagement (i.e. likes, comments) as well as if the effects of visual aesthetics varied by calorie density. Our results showed that both visual aesthetics and calorie density were important predictors of image popularity. The use of arousing, warm colors such as red, orange, and yellow, feature complexity, and repetition predicted higher likes, whereas brightness, colorfulness, and compositional complexity acted reversely. A similar pattern was observed for comments. The calorie density of foods in images positively predicted likes and comments. Also, the effects of visual aesthetics varied by calorie content and were more pronounced for low-calorie images. Health practitioners who plan to harness the power of social media to encourage certain dietary behaviors should take visual aesthetics into account when designing persuasive messages and campaigns. Code availability statementThe Python scripts to conduct computer vision analysis described in this manuscript are available at https://github.com/yilangpeng/food-image-instagram. The Python Package Athec (https://github.com/yilangpeng/Athec) was used to conduct the analysis of aesthetic features (e.g., brightness, color percentages). A detailed description can be found in Peng (Citation2022).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10410236.2023.2175635.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助BONBON采纳,获得10
刚刚
小马完成签到,获得积分10
1秒前
1秒前
细腻沅发布了新的文献求助10
3秒前
火羽白然完成签到 ,获得积分10
3秒前
冰西瓜完成签到 ,获得积分10
4秒前
季忆发布了新的文献求助10
4秒前
4秒前
cc发布了新的文献求助10
5秒前
Hello应助糊涂的小伙采纳,获得10
5秒前
甜甜的冷霜完成签到,获得积分10
5秒前
hkxfg发布了新的文献求助10
6秒前
谭谨川完成签到,获得积分10
6秒前
李爱国应助云中渊采纳,获得10
7秒前
7秒前
LT发布了新的文献求助10
8秒前
8秒前
高兴藏花发布了新的文献求助10
8秒前
10秒前
Allen完成签到,获得积分10
11秒前
11秒前
楪i完成签到,获得积分10
11秒前
值得完成签到,获得积分10
13秒前
13秒前
远山完成签到,获得积分10
14秒前
星星发布了新的文献求助10
14秒前
nanhe698发布了新的文献求助20
14秒前
阳光无声完成签到,获得积分10
14秒前
金色年华发布了新的文献求助10
14秒前
shatang完成签到,获得积分10
15秒前
16秒前
Owen应助一天八杯水采纳,获得10
16秒前
所所应助静静子采纳,获得10
17秒前
所所应助jy采纳,获得10
17秒前
hkxfg完成签到,获得积分10
17秒前
duo完成签到,获得积分10
18秒前
19秒前
spurs17发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808