ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation

计算机科学 分割 编码器 人工智能 模式识别(心理学) 变压器 图像分割 机器学习 电压 操作系统 物理 量子力学
作者
Yufei Wen,Chongxin Liang,Jingyin Lin,Huisi Wu,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 340-354 被引量:1
标识
DOI:10.1007/978-3-031-25066-8_18
摘要

AbstractAccurate fetal brain MRI image segmentation is essential for fetal disease diagnosis and treatment. While manual segmentation is laborious, time-consuming, and error-prone, automated segmentation is a challenging task owing to (1) the variations in shape and size of brain structures among patients, (2) the subtle changes caused by congenital diseases, and (3) the complicated anatomy of brain. It is critical to effectively capture the long-range dependencies and correlations among training samples to yield satisfactory results. Recently, some transformer-based models have been proposed and achieved good performance in segmentation tasks. However, the self-attention blocks embedded in transformers often neglect the latent relationships among different samples. Model may have biased results due to the unbalanced data distribution in the training dataset. We propose a novel unbalanced weighted Unet equipped with a new ExSwin transformer block to comprehensively address the above concerns by effectively capturing long-range dependencies and correlations among different samples. We design a deeper encoder to facilitate features extracting and preserving more semantic details. In addition, an adaptive weight adjusting method is implemented to dynamically adjust the loss weight of different classes to optimize learning direction and extract more features from under-learning classes. Extensive experiments on a FeTA dataset demonstrate the effectiveness of our model, achieving better results than state-of-the-art approaches.KeywordsFetal brain MRI imagesTransformerMedical image segmentation

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重重完成签到 ,获得积分10
刚刚
现代水卉发布了新的文献求助10
刚刚
刚刚
刚刚
Orange应助丝绒采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
wu完成签到,获得积分10
3秒前
kolento发布了新的文献求助10
3秒前
深藏blue发布了新的文献求助10
4秒前
老实怀蝶完成签到,获得积分10
4秒前
白瑾完成签到 ,获得积分10
4秒前
Akim应助June采纳,获得10
4秒前
叛逆黑洞完成签到 ,获得积分10
5秒前
zx发布了新的文献求助10
5秒前
5秒前
苗条一兰完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
Jing发布了新的文献求助10
7秒前
7秒前
LJX发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
flyfish完成签到,获得积分10
8秒前
bckl888完成签到,获得积分10
8秒前
8秒前
ww发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
ding应助Wanderer采纳,获得10
10秒前
锅包肉爱吃肉完成签到 ,获得积分10
10秒前
HollidayLee完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515