ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation

计算机科学 分割 编码器 人工智能 模式识别(心理学) 变压器 图像分割 机器学习 电压 操作系统 物理 量子力学
作者
Yufei Wen,Chongxin Liang,Jingyin Lin,Huisi Wu,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 340-354 被引量:1
标识
DOI:10.1007/978-3-031-25066-8_18
摘要

AbstractAccurate fetal brain MRI image segmentation is essential for fetal disease diagnosis and treatment. While manual segmentation is laborious, time-consuming, and error-prone, automated segmentation is a challenging task owing to (1) the variations in shape and size of brain structures among patients, (2) the subtle changes caused by congenital diseases, and (3) the complicated anatomy of brain. It is critical to effectively capture the long-range dependencies and correlations among training samples to yield satisfactory results. Recently, some transformer-based models have been proposed and achieved good performance in segmentation tasks. However, the self-attention blocks embedded in transformers often neglect the latent relationships among different samples. Model may have biased results due to the unbalanced data distribution in the training dataset. We propose a novel unbalanced weighted Unet equipped with a new ExSwin transformer block to comprehensively address the above concerns by effectively capturing long-range dependencies and correlations among different samples. We design a deeper encoder to facilitate features extracting and preserving more semantic details. In addition, an adaptive weight adjusting method is implemented to dynamically adjust the loss weight of different classes to optimize learning direction and extract more features from under-learning classes. Extensive experiments on a FeTA dataset demonstrate the effectiveness of our model, achieving better results than state-of-the-art approaches.KeywordsFetal brain MRI imagesTransformerMedical image segmentation

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸奶鱼发布了新的文献求助10
刚刚
番茄肌肉完成签到,获得积分10
刚刚
Jasper应助芋圆不圆采纳,获得10
2秒前
SHADY592完成签到,获得积分10
2秒前
2秒前
www发布了新的文献求助10
3秒前
中中发布了新的文献求助10
3秒前
白云苍狗应助高源伯采纳,获得10
4秒前
SHADY592发布了新的文献求助10
4秒前
桐桐应助土豪的醉香采纳,获得10
4秒前
Jasper应助羊肉泡馍采纳,获得10
6秒前
6秒前
7秒前
7秒前
JamesPei应助D&L采纳,获得10
7秒前
7秒前
9秒前
香蕉觅云应助SHADY592采纳,获得10
10秒前
喜悦代双完成签到,获得积分10
10秒前
10秒前
11秒前
陆拾荒发布了新的文献求助10
11秒前
旺旺完成签到,获得积分10
12秒前
坦率灵槐应助纪汶欣采纳,获得20
12秒前
奋斗刚发布了新的文献求助10
12秒前
sincere-辉发布了新的文献求助10
13秒前
14秒前
15秒前
Owen应助lilili采纳,获得10
15秒前
15秒前
15秒前
非了个凡完成签到 ,获得积分10
16秒前
YEGE发布了新的文献求助10
16秒前
王威完成签到,获得积分10
17秒前
华仔应助不见木棉采纳,获得10
17秒前
17秒前
pp发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
今后应助卡萨丁那看啥采纳,获得10
19秒前
aben050361发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538