ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation

计算机科学 分割 编码器 人工智能 模式识别(心理学) 变压器 图像分割 机器学习 电压 操作系统 物理 量子力学
作者
Yufei Wen,Chongxin Liang,Jingyin Lin,Huisi Wu,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 340-354 被引量:1
标识
DOI:10.1007/978-3-031-25066-8_18
摘要

AbstractAccurate fetal brain MRI image segmentation is essential for fetal disease diagnosis and treatment. While manual segmentation is laborious, time-consuming, and error-prone, automated segmentation is a challenging task owing to (1) the variations in shape and size of brain structures among patients, (2) the subtle changes caused by congenital diseases, and (3) the complicated anatomy of brain. It is critical to effectively capture the long-range dependencies and correlations among training samples to yield satisfactory results. Recently, some transformer-based models have been proposed and achieved good performance in segmentation tasks. However, the self-attention blocks embedded in transformers often neglect the latent relationships among different samples. Model may have biased results due to the unbalanced data distribution in the training dataset. We propose a novel unbalanced weighted Unet equipped with a new ExSwin transformer block to comprehensively address the above concerns by effectively capturing long-range dependencies and correlations among different samples. We design a deeper encoder to facilitate features extracting and preserving more semantic details. In addition, an adaptive weight adjusting method is implemented to dynamically adjust the loss weight of different classes to optimize learning direction and extract more features from under-learning classes. Extensive experiments on a FeTA dataset demonstrate the effectiveness of our model, achieving better results than state-of-the-art approaches.KeywordsFetal brain MRI imagesTransformerMedical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ADAMWS发布了新的文献求助10
刚刚
大模型应助木月子采纳,获得10
刚刚
拼搏的青雪完成签到 ,获得积分10
刚刚
1秒前
1秒前
彭于晏应助星蒲采纳,获得30
1秒前
烟花应助sxqz采纳,获得30
2秒前
ziyue发布了新的文献求助10
2秒前
Chill发布了新的文献求助10
3秒前
爆米花应助专注乌冬面采纳,获得10
3秒前
Trista发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
hujlina完成签到,获得积分10
4秒前
76完成签到,获得积分20
5秒前
DONGmumu发布了新的文献求助10
5秒前
yts09完成签到,获得积分10
5秒前
DY发布了新的文献求助10
5秒前
6秒前
7秒前
Nutrition_YHR完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
李紫薯发布了新的文献求助10
8秒前
ZZZ完成签到,获得积分10
8秒前
万能图书馆应助我想@科研采纳,获得10
8秒前
童绾绾完成签到,获得积分10
8秒前
beifeng发布了新的文献求助10
9秒前
9秒前
9秒前
刘刘大顺发布了新的文献求助10
9秒前
椰叶完成签到,获得积分10
9秒前
无花果应助云襄采纳,获得10
10秒前
领导范儿应助yyyrrr采纳,获得10
10秒前
李爱国应助执笔诉余生1采纳,获得10
10秒前
超帅听枫发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188