亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toughness Amplification via Controlled Nanostructure in Lightweight Nano‐Bouligand Materials

材料科学 延展性(地球科学) 韧性 纳米材料 弹性(材料科学) 断裂韧性 纳米纤维 纳米- 复合材料 纳米尺度 纳米结构 消散 纳米技术 损伤容限 增韧 复合数 蠕动 物理 热力学
作者
Zainab S. Patel,Lucas R. Meza
出处
期刊:Small [Wiley]
卷期号:19 (50) 被引量:5
标识
DOI:10.1002/smll.202207779
摘要

The enhanced properties of nanomaterials make them attractive for advanced high-performance materials, but their role in promoting toughness has been unclear. Fabrication challenges often prevent the proper organization of nanomaterial constituents, and inadequate testing methods have led to a poor knowledge of toughness at small scales. In this work, the individual roles of nanomaterials and nanoarchitecture on toughness are quantified by creating lightweight materials made from helicoidal polymeric nanofibers (nano-Bouligand). Unidirectional ( θ$\theta $ = 0°) and nano-Bouligand beams ( θ$\theta $ = 2°-90°) are fabricated using two-photon lithography and are designed in a micro-single edge notch bend (µ-SENB) configuration with relative densities ρ¯$\overline \rho $ between 48% and 81%. Experiments demonstrate two unique toughening mechanisms. First, size-enhanced ductility of nanoconfined polymer fibers increases specific fracture energy by 70% in the 0° unidirectional beams. Second, nanoscale stiffness heterogeneity created via inter-layer fiber twisting impedes crack growth and improves absolute fracture energy dissipation by 48% in high-density nano-Bouligand materials. This demonstration of size-enhanced ductility and nanoscale heterogeneity as coexisting toughening mechanisms reveals the capacity for nanoengineered materials to greatly improve mechanical resilience in a new generation of advanced materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助灵巧的大开采纳,获得10
2秒前
充电宝应助苏诗兰采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
12秒前
15秒前
18秒前
苏诗兰发布了新的文献求助10
20秒前
24秒前
山野完成签到 ,获得积分10
38秒前
40秒前
栗子完成签到,获得积分10
42秒前
yara完成签到 ,获得积分10
44秒前
45秒前
47秒前
LHC发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
盛事不朽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
Zefinity完成签到,获得积分10
1分钟前
orixero应助altair采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
altair发布了新的文献求助20
1分钟前
T1aNer299完成签到,获得积分20
1分钟前
T1aNer299发布了新的文献求助10
2分钟前
Splaink完成签到 ,获得积分10
2分钟前
smm完成签到 ,获得积分10
2分钟前
huyu完成签到 ,获得积分10
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739324
求助须知:如何正确求助?哪些是违规求助? 5385476
关于积分的说明 15339630
捐赠科研通 4881945
什么是DOI,文献DOI怎么找? 2624022
邀请新用户注册赠送积分活动 1572714
关于科研通互助平台的介绍 1529508