亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toughness Amplification via Controlled Nanostructure in Lightweight Nano‐Bouligand Materials

材料科学 延展性(地球科学) 韧性 纳米材料 弹性(材料科学) 断裂韧性 纳米纤维 纳米- 复合材料 纳米尺度 纳米结构 消散 纳米技术 损伤容限 增韧 复合数 蠕动 物理 热力学
作者
Zainab S. Patel,Lucas R. Meza
出处
期刊:Small [Wiley]
卷期号:19 (50) 被引量:5
标识
DOI:10.1002/smll.202207779
摘要

The enhanced properties of nanomaterials make them attractive for advanced high-performance materials, but their role in promoting toughness has been unclear. Fabrication challenges often prevent the proper organization of nanomaterial constituents, and inadequate testing methods have led to a poor knowledge of toughness at small scales. In this work, the individual roles of nanomaterials and nanoarchitecture on toughness are quantified by creating lightweight materials made from helicoidal polymeric nanofibers (nano-Bouligand). Unidirectional ( θ$\theta $ = 0°) and nano-Bouligand beams ( θ$\theta $ = 2°-90°) are fabricated using two-photon lithography and are designed in a micro-single edge notch bend (µ-SENB) configuration with relative densities ρ¯$\overline \rho $ between 48% and 81%. Experiments demonstrate two unique toughening mechanisms. First, size-enhanced ductility of nanoconfined polymer fibers increases specific fracture energy by 70% in the 0° unidirectional beams. Second, nanoscale stiffness heterogeneity created via inter-layer fiber twisting impedes crack growth and improves absolute fracture energy dissipation by 48% in high-density nano-Bouligand materials. This demonstration of size-enhanced ductility and nanoscale heterogeneity as coexisting toughening mechanisms reveals the capacity for nanoengineered materials to greatly improve mechanical resilience in a new generation of advanced materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
shuoliu完成签到 ,获得积分10
5秒前
北地风情完成签到 ,获得积分10
5秒前
zzzzqqqq发布了新的文献求助10
9秒前
zzzzqqqq完成签到,获得积分20
13秒前
14秒前
15秒前
20秒前
香蕉觅云应助呆萌的访枫采纳,获得10
22秒前
伊祁夜明完成签到,获得积分10
23秒前
li发布了新的文献求助10
25秒前
li完成签到,获得积分10
32秒前
35秒前
一个好昵称完成签到 ,获得积分10
35秒前
38秒前
一日落叶发布了新的文献求助10
41秒前
搜集达人应助光轮2000采纳,获得10
47秒前
52秒前
hahahan完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
丛士乔完成签到 ,获得积分10
1分钟前
星辰大海应助cjfc采纳,获得10
1分钟前
000发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
uery完成签到,获得积分10
1分钟前
蓝胖子发布了新的文献求助10
1分钟前
1分钟前
香豆素完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
典雅绮兰完成签到 ,获得积分10
1分钟前
cjfc发布了新的文献求助10
1分钟前
NexusExplorer应助mm采纳,获得10
1分钟前
lijiawei完成签到,获得积分10
1分钟前
1分钟前
Ava应助cjfc采纳,获得10
1分钟前
Mr完成签到 ,获得积分10
1分钟前
HaonanZhang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508