Ultrasensitive Antibiotic Perceiving Based on Aptamer-Functionalized Ultraclean Graphene Field-Effect Transistor Biosensor

生物传感器 适体 纳米技术 检出限 石墨烯 化学 晶体管 四环素 抗生素 场效应晶体管 材料科学 色谱法 电气工程 工程类 分子生物学 生物化学 电压 生物
作者
Shun Wang,Mingyuan Sun,Yunhong Zhang,Hao Ji,Jianwei Gao,Shuai Song,Jun Sun,Hong Liu,Yu Zhang,Lin Han
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (42): 14785-14793 被引量:32
标识
DOI:10.1021/acs.analchem.2c03732
摘要

Antibiotics are powerful tools to treat bacterial infections, but antibiotic pollution is becoming a severe threat to the effective treatment of human bacterial infections. The detection of antibiotics in water has been a crucial research area for bioassays in recent years. There is still an urgent need for a simple ultrasensitive detection approach to achieve accurate antibiotic detection at low concentrations. Herein, a field-effect transistor (FET)-based biosensor was developed using ultraclean graphene and an aptamer for ultrasensitive tetracycline detection. Using a newly designed camphor-rosin clean transfer (CRCT) scheme to prepare ultraclean graphene, the carrier mobility of the FET is found to be improved by more than 10 times compared with the FET prepared by the conventional PMMA transfer (CPT) method. Based on the FET, aptamer-functionalized transistor antibiotic biosensors were constructed and characterized. A dynamic detection range of 5 orders of magnitude, a sensitivity of 21.7 mV/decade, and a low detection limit of 100 fM are achieved for the CRCT-FET biosensors with good stability, which are much improved compared with the biosensor prepared by the CPT method. The antibiotic sensing and sensing performance enhancement mechanisms for the CRCT-FET biosensor were studied and analyzed based on experimental results and a biosensing model. Finally, the CRCT-FET biosensor was verified by detecting antibiotics in actual samples obtained from the entrances of Bohai Bay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助zzz采纳,获得10
1秒前
小猴同学完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
橙子完成签到,获得积分10
5秒前
hyh发布了新的文献求助10
5秒前
酷波er应助CHB只争朝夕采纳,获得10
6秒前
7秒前
7秒前
8秒前
saisyo发布了新的文献求助10
9秒前
hyh完成签到,获得积分10
11秒前
朴实云应完成签到,获得积分10
13秒前
Akim应助稳重的悟空采纳,获得10
14秒前
15秒前
SYLH应助英勇的初柔采纳,获得10
15秒前
18秒前
今后应助好运连连采纳,获得10
18秒前
科研通AI5应助rubyyoyo采纳,获得10
21秒前
21秒前
22秒前
Erick完成签到,获得积分0
22秒前
XJ发布了新的文献求助10
23秒前
jyy发布了新的文献求助10
24秒前
wanci应助无算浮白采纳,获得10
24秒前
25秒前
CC发布了新的文献求助20
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
枫之林发布了新的文献求助10
26秒前
1234完成签到 ,获得积分10
27秒前
CipherSage应助loyalll采纳,获得10
27秒前
蔡雯完成签到,获得积分10
30秒前
30秒前
yangminghan发布了新的文献求助10
31秒前
66发布了新的文献求助10
32秒前
acetdw发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516