Cross-Domain and Cross-Modal Knowledge Distillation in Domain Adaptation for 3D Semantic Segmentation

计算机科学 人工智能 情态动词 蒸馏 领域(数学分析) 机器学习 分割 知识转移 点云 适应(眼睛) 模式识别(心理学) 数学 光学 数学分析 知识管理 化学 物理 有机化学 高分子化学
作者
Miaoyu Li,Yachao Zhang,Yuan Xie,Zuodong Gao,Cuihua Li,Zhizhong Zhang,Yanyun Qu
标识
DOI:10.1145/3503161.3547990
摘要

With the emergence of multi-modal datasets where LiDAR and camera are synchronized and calibrated, cross-modal Unsupervised Domain Adaptation (UDA) has attracted increasing attention because it reduces the laborious annotation of target domain samples. To alleviate the distribution gap between source and target domains, existing methods conduct feature alignment by using adversarial learning. However, it is well-known to be highly sensitive to hyperparameters and difficult to train. In this paper, we propose a novel model (Dual-Cross) that integrates Cross-Domain Knowledge Distillation (CDKD) and Cross-Modal Knowledge Distillation (CMKD) to mitigate domain shift. Specifically, we design the multi-modal style transfer to convert source image and point cloud to target style. With these synthetic samples as input, we introduce a target-aware teacher network to learn knowledge of the target domain. Then we present dual-cross knowledge distillation when the student is learning on source domain. CDKD constrains teacher and student predictions under same modality to be consistent. It can transfer target-aware knowledge from the teacher to the student, making the student more adaptive to the target domain. CMKD generates hybrid-modal prediction from the teacher predictions and constrains it to be consistent with both 2D and 3D student predictions. It promotes the information interaction between two modalities to make them complement each other. From the evaluation results on various domain adaptation settings, Dual-Cross significantly outperforms both uni-modal and cross-modal state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暖若安阳完成签到,获得积分10
刚刚
1秒前
鸣笛应助科研通管家采纳,获得30
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
May应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
li发布了新的文献求助10
2秒前
5秒前
王侯将相发布了新的文献求助10
5秒前
GregHouse123发布了新的文献求助10
6秒前
小代发布了新的文献求助10
6秒前
晴天完成签到 ,获得积分10
6秒前
新野发布了新的文献求助10
6秒前
8秒前
YW完成签到,获得积分10
8秒前
Zxx应助哇哈哈采纳,获得10
9秒前
9秒前
10秒前
10秒前
杳鸢应助squirtle采纳,获得30
10秒前
HY兑发布了新的文献求助20
11秒前
清明完成签到,获得积分10
12秒前
12秒前
缓慢千易发布了新的文献求助10
12秒前
霜霜完成签到,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203