Comprehensive Relationship Reasoning for Composed Query Based Image Retrieval

计算机科学 情报检索 样品(材料) 利用 钥匙(锁) 图像检索 代表(政治) 图像(数学) 匹配(统计) 数据挖掘 补语(音乐) 情态动词 人工智能 数学 基因 统计 政治 生物化学 表型 色谱法 计算机安全 化学 高分子化学 互补 法学 政治学
作者
Feifei Zhang,Ming Yan,Ji Zhang,Changsheng Xu
标识
DOI:10.1145/3503161.3548126
摘要

Composed Query Based Image Retrieval (CQBIR) aims at searching images relevant to a composed query, i.e., a reference image together with a modifier text. Compared with conventional image retrieval, which takes a single image or text to retrieve desired images, CQBIR encounters more challenges as it requires not only effective semantic correspondence between the heterogeneous query and target, but also synergistic understanding of the composed query. To establish robust CQBIR model, four critical types of relational information can be included, i.e., cross-modal, intra-sample, inter-sample, and cross-sample relationships. Pioneer studies mainly exploit parts of the information, which are hard to make them enhance and complement each other. In this paper, we propose a comprehensive relationship reasoning network by fully exploring the four types of information for CQBIR, which mainly includes two key designs. First, we introduce a memory-augmented cross-modal attention module, in which the representation of the composed query is augmented by considering the cross-modal relationship between the reference image and the modification text. Second, we design a multi-scale matching strategy to optimize our network, aiming at harnessing information from the intra-sample, inter-sample, and cross-sample relationships. To the best of our knowledge, this is the first work to fully explore the four pieces of relationships in a unified deep model for CQBIR. Comprehensive experimental results on five standard benchmarks demonstrate that the proposed method performs favorably against state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Antonio完成签到 ,获得积分0
1秒前
双双发布了新的文献求助10
2秒前
JJJJJJJ完成签到,获得积分20
3秒前
fantianhui完成签到 ,获得积分10
3秒前
同力力力发布了新的文献求助10
4秒前
sarah发布了新的文献求助10
6秒前
科研通AI6应助111采纳,获得10
6秒前
6秒前
Ava应助匆匆采纳,获得10
6秒前
请问哈完成签到 ,获得积分10
7秒前
fahbfafajk发布了新的文献求助10
7秒前
王淳完成签到 ,获得积分10
8秒前
黄文龙完成签到,获得积分10
8秒前
桐桐应助林煜昕采纳,获得10
9秒前
冷傲的咖啡豆完成签到 ,获得积分10
11秒前
11秒前
杰果完成签到,获得积分10
11秒前
爆米花应助激动的一手采纳,获得10
12秒前
unchanged完成签到,获得积分10
13秒前
西格玛完成签到,获得积分10
13秒前
徐yy完成签到 ,获得积分10
13秒前
可乐清欢完成签到,获得积分10
14秒前
14秒前
尘封雪发布了新的文献求助10
15秒前
cherryhuang完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
cw完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得30
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
超级幼旋应助科研通管家采纳,获得10
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586375
求助须知:如何正确求助?哪些是违规求助? 4669663
关于积分的说明 14779435
捐赠科研通 4619899
什么是DOI,文献DOI怎么找? 2530870
邀请新用户注册赠送积分活动 1499681
关于科研通互助平台的介绍 1467830