Comprehensive Relationship Reasoning for Composed Query Based Image Retrieval

计算机科学 情报检索 样品(材料) 利用 钥匙(锁) 图像检索 代表(政治) 图像(数学) 匹配(统计) 数据挖掘 补语(音乐) 情态动词 人工智能 数学 基因 统计 政治 生物化学 表型 色谱法 计算机安全 化学 高分子化学 互补 法学 政治学
作者
Feifei Zhang,Ming Yan,Ji Zhang,Changsheng Xu
标识
DOI:10.1145/3503161.3548126
摘要

Composed Query Based Image Retrieval (CQBIR) aims at searching images relevant to a composed query, i.e., a reference image together with a modifier text. Compared with conventional image retrieval, which takes a single image or text to retrieve desired images, CQBIR encounters more challenges as it requires not only effective semantic correspondence between the heterogeneous query and target, but also synergistic understanding of the composed query. To establish robust CQBIR model, four critical types of relational information can be included, i.e., cross-modal, intra-sample, inter-sample, and cross-sample relationships. Pioneer studies mainly exploit parts of the information, which are hard to make them enhance and complement each other. In this paper, we propose a comprehensive relationship reasoning network by fully exploring the four types of information for CQBIR, which mainly includes two key designs. First, we introduce a memory-augmented cross-modal attention module, in which the representation of the composed query is augmented by considering the cross-modal relationship between the reference image and the modification text. Second, we design a multi-scale matching strategy to optimize our network, aiming at harnessing information from the intra-sample, inter-sample, and cross-sample relationships. To the best of our knowledge, this is the first work to fully explore the four pieces of relationships in a unified deep model for CQBIR. Comprehensive experimental results on five standard benchmarks demonstrate that the proposed method performs favorably against state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MCQ完成签到,获得积分10
1秒前
浮游应助小太阳采纳,获得10
1秒前
Endless发布了新的文献求助10
1秒前
皮代谷完成签到,获得积分10
1秒前
充电宝应助芝士就是力量采纳,获得10
2秒前
2秒前
ethereal发布了新的文献求助10
2秒前
花粉过敏发布了新的文献求助10
2秒前
斯文123发布了新的文献求助10
2秒前
zmhstb发布了新的文献求助10
3秒前
3秒前
orixero应助一个小胖子采纳,获得10
3秒前
石人发布了新的文献求助10
4秒前
4秒前
文耳东发布了新的文献求助10
4秒前
4秒前
pdds发布了新的文献求助10
5秒前
冷酷芝完成签到,获得积分10
5秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
不过尔尔发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
mufeixue完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
简单的乐驹应助科研通管家采纳,获得150
9秒前
9秒前
9秒前
传奇3应助科研通管家采纳,获得30
9秒前
bai发布了新的文献求助10
9秒前
Return应助科研通管家采纳,获得10
9秒前
Qingyong21应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049