Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function

计算机科学 人工智能 图像融合 计算机视觉 平滑的 预处理器 融合规则 GSM演进的增强数据速率 图像(数学)
作者
Apoorav Maulik Sharma,Renu Vig,Ayush Dogra,Bhawna Goyal,Ahmed Alkhayyat,Vinay Kukreja,Manob Jyoti Saikia
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-67502-y
摘要

This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助龙06采纳,获得10
刚刚
刚刚
刚刚
二傻不刮痧完成签到 ,获得积分10
1秒前
蓝景轩辕完成签到 ,获得积分0
1秒前
湛湛蓝完成签到,获得积分10
1秒前
星辰大海应助yll采纳,获得10
2秒前
李静完成签到,获得积分20
2秒前
爆米花应助赫鲁晓夫采纳,获得10
2秒前
褚青筠发布了新的文献求助10
2秒前
yy发布了新的文献求助10
5秒前
逆臣完成签到,获得积分10
6秒前
李静发布了新的文献求助30
6秒前
万能图书馆应助ZHAOSHI采纳,获得10
10秒前
Neo完成签到,获得积分10
10秒前
10秒前
13秒前
皮皮虾完成签到 ,获得积分10
14秒前
yy完成签到,获得积分10
15秒前
真的OK发布了新的文献求助10
18秒前
JamesPei应助zxt采纳,获得200
18秒前
hahaha驳回了李健应助
18秒前
19秒前
852应助研友_LpvQlZ采纳,获得10
22秒前
hhhhhhh完成签到,获得积分20
22秒前
吹泡泡的红豆完成签到 ,获得积分10
22秒前
23秒前
wanci应助可耐的尔白采纳,获得10
23秒前
褚青筠完成签到,获得积分10
27秒前
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
SSScome应助科研通管家采纳,获得10
27秒前
SSScome应助科研通管家采纳,获得10
27秒前
SSScome应助科研通管家采纳,获得10
27秒前
极度厌蠢应助科研通管家采纳,获得10
27秒前
T9的梦应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Calyn驳回了卡卡应助
27秒前
SSScome应助科研通管家采纳,获得10
27秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356273
求助须知:如何正确求助?哪些是违规求助? 2979823
关于积分的说明 8692252
捐赠科研通 2661384
什么是DOI,文献DOI怎么找? 1457177
科研通“疑难数据库(出版商)”最低求助积分说明 674714
邀请新用户注册赠送积分活动 665533