已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single-cell hdWGCNA reveals metastatic protective macrophages and development of deep learning model in uveal melanoma

黑色素瘤 转移性黑色素瘤 医学 癌症研究
作者
Yifang Sun,Jian Wu,Qian Zhang,Pengzhen Wang,Jinglin Zhang,Yonggang Yuan
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12967-024-05421-2
摘要

Abstract Background Although there has been some progress in the treatment of primary uveal melanoma (UVM), distant metastasis remains the leading cause of death in patients. Monitoring, staging, and treatment of metastatic disease have not yet reached consensus. Although more than half of metastatic tumors (62%) are diagnosed within five years after primary tumor treatment, the remainder are only detected in the following 25 years. The mechanisms of UVM metastasis and its impact on prognosis are not yet fully understood. Methods scRNA-seq data of UVM samples were obtained and processed, followed by cell type identification and characterization of macrophage subpopulations. High-dimensional weighted gene co-expression network analysis (HdWGCNA) was performed to identify key gene modules associated with metastatic protective macrophages (MPMφ) in primary samples, and functional analyses were conducted. Non-negative matrix factorization (NMF) clustering and immune cell infiltration analyses were performed using the MPMφ gene signatures. Machine learning models were developed using the identified metastatic protective macrophages related genes (MPMRGs) to distinguish primary from metastatic patients. A deep learning convolutional neural network (CNN) model was constructed based on MPMRGs and cell type associations. Lastly, a prognostic model was established using the MPMRGs and validated in independent cohorts. Results Single-cell RNA-seq analysis revealed a unique immune microenvironment landscape in primary samples compared to metastatic samples, with an enrichment of macrophage cells. Using HdWGCNA, MPMφ and marker genes were identified. Functional analysis showed an enrichment of genes related to antigen processing progress and immune response. Machine learning and deep learning models based on key genes showed significant effectiveness in distinguishing between primary and metastatic patients. The prognostic model based on key genes demonstrated substantial predictive value for the survival of UVM patients. Conclusion Our study identified key macrophage subpopulations related to metastatic samples, which have a profound impact on shaping the tumor immune microenvironment. A prognostic model based on macrophage cell genes can be used to predict the prognosis of UVM patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大方的依琴完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Lucas应助重要手机采纳,获得10
3秒前
3秒前
4秒前
酷波er应助活泼的心锁采纳,获得10
4秒前
想飞的熊发布了新的文献求助10
7秒前
游戏人间发布了新的文献求助10
8秒前
8秒前
suimh发布了新的文献求助10
8秒前
8秒前
8秒前
竹桃完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
XIAOJU_U发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
jinl9587完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
萧奕尘发布了新的文献求助10
13秒前
13秒前
村上种树发布了新的文献求助10
14秒前
丘比特应助yinlu采纳,获得10
15秒前
村上种树发布了新的文献求助10
15秒前
村上种树发布了新的文献求助10
15秒前
村上种树发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466573
求助须知:如何正确求助?哪些是违规求助? 3059341
关于积分的说明 9066005
捐赠科研通 2749807
什么是DOI,文献DOI怎么找? 1508718
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696838