Continuous Viscoelasticity Measurement of Cell Spheroids via Microfluidic Electrical Aspiration

微流控 球体 粘弹性 材料科学 生物医学工程 纳米技术 化学 复合材料 医学 体外 生物化学
作者
Heyi Chen,Jacob Brown,Aaron Urban,Ge Zhang,Jiang Zhe
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01405
摘要

Measurement of viscoelastic characteristics of cells cultured in three-dimensional (3D) is critical to study many biological processes including tissue and organ growth. In this article, we present a unique electrical aspiration method to measure the viscoelastic properties of cell spheroids. A microfluidic sensor was created to demonstrate this method. Unlike the traditional optical aspiration method, the aspiration of the cell spheroids is monitored via monitoring the dynamic electrical resistance change of a symmetrical microfluidic aspiration channel. We first used the microfluidic device to measure the viscoelastic properties of two types of biological tissues derived from calfskin and porcine left ventricular myocardium. The equilibrium elastic modulus and creep time constants were measured to be 148.1 ± 24.1 kPa and 76.7 ± 3.5 s and 64.5 ± 7.7 kPa and 31.4 ± 2.7 s respectively, which matched well with reported data. The test validated the principle of the electrical aspiration method. Next, we applied the method for measuring cell spheroids made of human mesenchymal stem cells at different culture stages. The equilibrium elastic modulus and apparent viscosity decreased with increasing culture time. Compared to optical aspiration methods, this microfluidic electrical aspiration method has no reliance on transparent materials and image processing, which thus allows simple setup, fast data acquisition and analysis. The use of a symmetric aspiration channel and the linear half-space model enable measurements of a large number of viscoelastic properties via a single measurement with higher accuracy. This method will enable high throughput, continuous viscoelastic measurement of cell spheroids as well as other 3D cell culture models in flow conditions without the need for any optical measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助cnnnnn采纳,获得10
1秒前
老迟到的晓露完成签到,获得积分20
1秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
小树完成签到 ,获得积分10
7秒前
墨玉都尉应助开心小诚采纳,获得20
8秒前
Orange应助阳光的刺猬采纳,获得10
9秒前
9秒前
包容问雁发布了新的文献求助100
9秒前
10秒前
少吃两口发布了新的文献求助10
10秒前
雯雯完成签到 ,获得积分10
12秒前
12秒前
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
勇敢牛牛发布了新的文献求助10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
大大发布了新的文献求助10
15秒前
15秒前
MISA完成签到 ,获得积分10
15秒前
少吃两口完成签到,获得积分20
17秒前
17秒前
mx999关注了科研通微信公众号
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534769
关于积分的说明 14146667
捐赠科研通 4451409
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433330
关于科研通互助平台的介绍 1410587