Classification of EEG evoked in 2D and 3D virtual reality: traditional machine learning vs. deep learning

脑电图 支持向量机 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 随机森林 机器学习 虚拟现实 心理学 神经科学
作者
Ming J. Zuo,Bing Yu,Sui Li
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ad89c5
摘要

Abstract Backgrounds
Virtual reality (VR) simulates real-life events and scenarios, widely used in education, entertainment, and medicine. VR can be presented in two or three dimensions (2D or 3D), and 3D VR produces a more realistic and immersive experience. Previous research has revealed that the electroencephalogram (EEG) induced by 3D VR has a different profile from that of 2D VR, manifesting in many aspects, such as the power of brain rhythm, brain activation, and brain functional connectivity. However, studies on how to classify EEG in 2D and 3D VR were limited.
Methods
64-channel EEG was recorded, while visual stimuli were given in 2D and 3D VR. The classification of these recorded EEG signals was done using two machine learning methods: the traditional method and the deep learning method. In the traditional machine learning classification, EEG features of power spectral density (PSD) and common spatial patterns (CSP) were extracted, and three classification algorithms, support vector machines (SVM), K-nearest neighbors (KNN), and random forests (RF), were used. A specialized convolutional neural network, EEGNet, was used in the deep learning classification. These classification approaches were compared with respect to their classification performance.
Results
In aspects of four performance evaluations for classification, accuracy, precision, recall, and F1-score, respectively, classification using the deep learning method is better than the traditional machine learning approaches. Classification accuracy with deep learning with EEGNet could reach up to 97.86%.
Conclusions
The classification performance of 2D and 3D VR-induced EEG can be achieved with EEGNet-based deep learning, outperforming conventional machine learning approaches. Given the role of EEGNet, which is designed for EEG-based brain-computer interfaces (BCI), better performance classification of EEG in 2D and 3D VR environments might be predicted to be helpful for the application of 3D VR in BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
归尘发布了新的文献求助10
1秒前
1秒前
Jasper应助金葡菌采纳,获得10
1秒前
科目三应助封虞采纳,获得10
2秒前
gaos发布了新的文献求助10
2秒前
BBQ完成签到,获得积分10
3秒前
3秒前
bkagyin应助居无何采纳,获得10
3秒前
罗sir完成签到,获得积分10
3秒前
竹萧发布了新的文献求助10
4秒前
谨慎的乐松完成签到,获得积分10
5秒前
墨白白发布了新的文献求助10
6秒前
米饭辣椒完成签到,获得积分10
6秒前
8秒前
方董发布了新的文献求助10
8秒前
坚强的严青应助BBQ采纳,获得50
11秒前
11秒前
12秒前
研友_VZG7GZ应助magicyouyou采纳,获得10
12秒前
里里发布了新的文献求助10
12秒前
明亮飞绿发布了新的文献求助10
13秒前
Yey完成签到 ,获得积分10
14秒前
完美世界应助如意果汁采纳,获得10
15秒前
16秒前
17秒前
achqx发布了新的文献求助10
18秒前
18秒前
搞怪的小蚂蚁应助墨白白采纳,获得10
18秒前
19秒前
sxk795发布了新的文献求助10
19秒前
20秒前
NexusExplorer应助YH采纳,获得10
20秒前
21秒前
斯文败类应助迷路的芝麻采纳,获得10
22秒前
22秒前
一朵发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301779
求助须知:如何正确求助?哪些是违规求助? 2936343
关于积分的说明 8477312
捐赠科研通 2610089
什么是DOI,文献DOI怎么找? 1424995
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646373