A Novel Method: YOLO-CE and 3D Point Cloud-Based Feature Extraction for Welding Seams of Tower Bases

塔楼 点云 焊接 萃取(化学) 点(几何) 特征(语言学) 计算机科学 特征提取 云计算 人工智能 计算机图形学(图像) 几何学 机械工程 结构工程 工程类 数学 语言学 化学 哲学 色谱法 操作系统
作者
Haihong Pan,Longyou Wang,Yu Fu,Bingqi Jia,Lin Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015209-015209
标识
DOI:10.1088/1361-6501/ad89e8
摘要

Abstract Robotic automated welding of non-standard steel structures presents significant challenges, particularly for electric power tower bases. This study introduces a novel approach that integrates the You Only Look Once—Compact Invert Block and Efficient Local Attention (YOLO-CE) model, an enhanced version of YOLOV8 for 2D image segmentation, with 3D point cloud technology. The YOLO-CE model is used to accurately extract point cloud data from the target area, which is then processed using the MSAC algorithm for efficient plane segmentation. Weld lines are identified through plane equations, allowing for initial weld point cloud extraction. To further refine accuracy, an optimized evaluation equation is developed that accounts for both the distance between the weld point cloud and the fitted plane, and the angle between their normal vectors. This enables precise classification of the weld point cloud. From this classification, key weld feature points are identified, and their exact positions are determined by calculating the distances between these points and their intersections with three planes. The reliability of the proposed method was validated using a robot for precise measurements, with a total error margin of less than 1.5084 mm, demonstrating high accuracy and stability. Post-operation inspections confirmed that the welds were filled and free from defects, meeting all process requirements. The YOLO-CE model achieved a mIoU of 96.38% and a precision of 99.8%, highlighting its effectiveness. This method provides an efficient and precise solution for the automated welding of non-standard steel structural components and has promising application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助海德堡采纳,获得10
1秒前
飞飞发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
mj完成签到,获得积分10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
lujie应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得50
1秒前
xunxunmimi应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
NexusExplorer应助漂亮采波采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
zhou完成签到,获得积分10
5秒前
鱼乐乐完成签到,获得积分10
5秒前
李健应助执笔客采纳,获得10
5秒前
baek完成签到,获得积分20
5秒前
李白完成签到,获得积分10
6秒前
lily2025发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
清茗完成签到,获得积分10
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589616
求助须知:如何正确求助?哪些是违规求助? 3157911
关于积分的说明 9517962
捐赠科研通 2860977
什么是DOI,文献DOI怎么找? 1572123
邀请新用户注册赠送积分活动 737702
科研通“疑难数据库(出版商)”最低求助积分说明 722522