Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect

记忆电阻器 材料科学 星团(航天器) 残余物 电化学 记忆晶体管 纳米技术 电子工程 计算机科学 电气工程 电阻随机存取存储器 算法 化学 电极 工程类 物理化学 电压 程序设计语言
作者
Quanhai Sun,Guanyu Chen
出处
期刊:Physica Status Solidi B-basic Solid State Physics [Wiley]
标识
DOI:10.1002/pssb.202400170
摘要

Although a memristor model, subjected to electrochemical metallization mechanism, has been proposed based on the spontaneous decay of clusters in the previous work, it does not agree with the human forgetting accurately. Therefore, an improved model is meaningfully presented for the memristor with the cluster spontaneous decay by adding the residual effect. The former is due to the inward contraction of atoms driven by surface energy, while the latter is because of the balance of attractive and repulsive forces between atoms. The model fits well with the actual device. The forgetting is caused by the spontaneous decay. Memory retention is generated due to the added effect, which is also the internal cause of good agreement with the actual forgetting. Additionally, short‐term plasticity is converted to long‐term plasticity through the repeated learning. The efficiency of experiential learning using this model is much higher than that using the previous. It is shown that the physical mechanism of spontaneous decay in the cluster‐based channel is different from that in vacancy‐based or atom‐based channel. The model working under a non‐ideal condition with the temperature influence is discussed. Potential applications based on the model are stated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingning给LZH的求助进行了留言
刚刚
1秒前
欢呼便当发布了新的文献求助10
2秒前
希望天下0贩的0应助KYN采纳,获得10
2秒前
5秒前
5秒前
youjiang发布了新的文献求助10
6秒前
糊涂虫发布了新的文献求助10
7秒前
wangjun完成签到,获得积分10
7秒前
SPQR完成签到,获得积分10
8秒前
哈哈完成签到,获得积分20
8秒前
流星完成签到,获得积分10
9秒前
QC完成签到 ,获得积分10
9秒前
11秒前
sad发布了新的文献求助10
12秒前
凝子老师发布了新的文献求助10
12秒前
12秒前
lucky完成签到,获得积分10
12秒前
又胖了发布了新的文献求助10
13秒前
15秒前
16秒前
17秒前
Wxxxxx完成签到 ,获得积分10
18秒前
超级小飞侠完成签到 ,获得积分10
19秒前
奋斗靖仇完成签到 ,获得积分10
20秒前
小蘑菇应助凝子老师采纳,获得10
20秒前
20秒前
田様应助sad采纳,获得10
21秒前
demotlx发布了新的文献求助10
22秒前
陈老太完成签到 ,获得积分10
22秒前
buno应助又胖了采纳,获得10
23秒前
23秒前
草莓江完成签到 ,获得积分10
28秒前
背后归尘完成签到,获得积分10
29秒前
29秒前
31秒前
31秒前
demotlx完成签到,获得积分10
31秒前
pencil123应助ybmdyr采纳,获得10
32秒前
向阳完成签到,获得积分20
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851