材料科学
表面张力
纳米技术
电解质
液态金属
流量(数学)
电场
半径
光电子学
复合材料
机械
电极
计算机科学
化学
物理
计算机安全
物理化学
量子力学
作者
Chunlei Song,Xianzan Tao,Yi‐Cheng Chen,Kaihao Mao,Ye Tao,Zhenyou Ge,Hao Wen,Xianhai Zeng,Biao Li,Rui Xue,Xikai Jiang,Zheng Xu,Yukun Ren
标识
DOI:10.1002/adfm.202409341
摘要
Abstract Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI