Efficiency-Driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion

聊天机器人 融合 计算机科学 万维网 语言学 哲学
作者
S. Vidivelli,R. Manikandan,A. Dharunbalaji
出处
期刊:Computers, materials & continua 卷期号:80 (2): 2423-2442 被引量:4
标识
DOI:10.32604/cmc.2024.054360
摘要

This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on proficiency close by viability. We accomplish this by joining three key innovations: LangChain, Retrieval Augmented Generation (RAG), and enormous language models (LLMs) tweaked with execution proficient strategies like LoRA and QLoRA. LangChain takes into consideration fastidious fitting of chatbots to explicit purposes, guaranteeing engaged and important collaborations with clients. RAG's web scratching capacities engage these chatbots to get to a tremendous store of data, empowering them to give exhaustive and enlightening reactions to requests. This recovered data is then decisively woven into reaction age utilizing LLMs that have been calibrated with an emphasis on execution productivity. This combination approach offers a triple advantage: further developed viability, upgraded client experience, and extended admittance to data. Chatbots become proficient at taking care of client questions precisely and productively, while instructive and logically pertinent reactions make a more regular and drawing in cooperation for clients. At last, web scratching enables chatbots to address a more extensive assortment of requests by conceding them admittance to a more extensive information base. By digging into the complexities of execution proficient LLM calibrating and underlining the basic job of web-scratched information, this examination offers a critical commitment to propelling custom chatbot plan and execution. The subsequent chatbots feature the monstrous capability of these advancements in making enlightening, easy to understand, and effective conversational specialists, eventually changing the manner in which clients cooperate with chatbots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sobergod完成签到,获得积分10
刚刚
小二郎应助消月明采纳,获得10
刚刚
大意的天亦完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
Akim应助123321采纳,获得10
2秒前
3秒前
3秒前
一一完成签到 ,获得积分10
4秒前
6秒前
李健的小迷弟应助fjhsg25采纳,获得10
6秒前
大东东完成签到,获得积分10
6秒前
skywalker完成签到,获得积分10
6秒前
7秒前
lin yan发布了新的文献求助10
8秒前
8秒前
yhjjj发布了新的文献求助30
8秒前
Akim应助shuicaoxi采纳,获得10
8秒前
8秒前
万物安生关注了科研通微信公众号
9秒前
龚成明发布了新的文献求助10
10秒前
fabian完成签到,获得积分10
10秒前
lvsehx完成签到,获得积分10
10秒前
xiaoran发布了新的文献求助10
11秒前
功成发布了新的文献求助10
11秒前
科研通AI5应助木子李采纳,获得10
11秒前
11秒前
12秒前
13秒前
bamboo发布了新的文献求助10
13秒前
ly完成签到,获得积分10
13秒前
14秒前
liyanglin发布了新的文献求助20
15秒前
16秒前
16秒前
星辰发布了新的文献求助10
16秒前
ly发布了新的文献求助10
17秒前
18秒前
123321发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516067
求助须知:如何正确求助?哪些是违规求助? 3098247
关于积分的说明 9238827
捐赠科研通 2793272
什么是DOI,文献DOI怎么找? 1532930
邀请新用户注册赠送积分活动 712455
科研通“疑难数据库(出版商)”最低求助积分说明 707290