Stabilizing and Accelerating Federated Learning on Heterogeneous Data With Partial Client Participation

计算机科学 人工智能 机器学习
作者
Hao Zhang,Chenglin Li,Wenrui Dai,Ziyang Zheng,Junni Zou,Hongkai Xiong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3469188
摘要

Federated learning (FL) commonly encourages the clients to perform multiple local updates before the global aggregation, thus avoiding frequent model exchanges and relieving the communication bottleneck between the server and clients. Though empirically effective, the negative impact of multiple local updates on the stability of FL is not thoroughly studied, which may result in a globally unstable and slow convergence. Based on sensitivity analysis, we define in this paper a local-update stability index for the general FL, as measured by the maximum inter-client model discrepancy after the multiple local updates that mainly stems from the data heterogeneity. It enables to determine how much the variation of client's models with multiple local updates may influence the global model, and can also be linked with the convergence and generalization. We theoretically derive the proposed local-update stability for current state-of-the-art FL methods, providing possible insight to understanding their motivation and limitation from a new perspective of stability. For example, naively executing the parallel acceleration locally at clients would harm the local-update stability. Motivated by this, we then propose a novel accelerated yet stabilized FL algorithm (named FedANAG) based on the server- and client-level Nesterov accelerated gradient (NAG). In FedANAG, the global and local momenta are elaborately designed and alternatively updated, while the stability of local update is enhanced with help of the global momentum. We prove the convergence of FedANAG for strongly convex, general convex and non-convex settings. We then conduct evaluations on both the synthetic and real-world datasets to first validate our proposed local-update stability. The results further show that across various data heterogeneity and client participation ratios, FedANAG not only accelerates the global convergence by reducing the required number of communication rounds to a target accuracy, but converges to an eventually higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hohostudy完成签到,获得积分10
1秒前
陆人甲完成签到,获得积分10
2秒前
张聪完成签到,获得积分10
2秒前
3秒前
小鱼女侠发布了新的文献求助10
3秒前
hao完成签到,获得积分10
3秒前
临水思长完成签到,获得积分10
4秒前
852应助Accepted采纳,获得30
4秒前
积极老黑完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
传奇3应助上进生采纳,获得10
7秒前
沙与沫完成签到 ,获得积分10
7秒前
8秒前
王权富贵完成签到,获得积分20
8秒前
佩佩发布了新的文献求助10
8秒前
9秒前
Mercury完成签到,获得积分10
10秒前
yile发布了新的文献求助10
11秒前
hyn发布了新的文献求助10
11秒前
11秒前
12秒前
sun发布了新的文献求助10
12秒前
Cast_Lappland发布了新的文献求助10
12秒前
单纯的易文完成签到 ,获得积分10
12秒前
小冷完成签到,获得积分10
12秒前
13秒前
13秒前
香蕉觅云应助田国兵采纳,获得10
13秒前
gk完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
CodeCraft应助哈哈哈采纳,获得10
14秒前
未来未知发布了新的文献求助10
16秒前
大模型应助标致曼荷采纳,获得30
17秒前
丘比特应助我爱学习采纳,获得10
17秒前
Cast_Lappland完成签到,获得积分10
18秒前
郎治宇发布了新的文献求助10
18秒前
18秒前
芜湖关注了科研通微信公众号
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038