亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stabilizing and Accelerating Federated Learning on Heterogeneous Data With Partial Client Participation

计算机科学 人工智能 机器学习
作者
Hao Zhang,Chenglin Li,Wenrui Dai,Ziyang Zheng,Junni Zou,Hongkai Xiong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:1
标识
DOI:10.1109/tpami.2024.3469188
摘要

Federated learning (FL) commonly encourages the clients to perform multiple local updates before the global aggregation, thus avoiding frequent model exchanges and relieving the communication bottleneck between the server and clients. Though empirically effective, the negative impact of multiple local updates on the stability of FL is not thoroughly studied, which may result in a globally unstable and slow convergence. Based on sensitivity analysis, we define in this paper a local-update stability index for the general FL, as measured by the maximum inter-client model discrepancy after the multiple local updates that mainly stems from the data heterogeneity. It enables to determine how much the variation of client's models with multiple local updates may influence the global model, and can also be linked with the convergence and generalization. We theoretically derive the proposed local-update stability for current state-of-the-art FL methods, providing possible insight to understanding their motivation and limitation from a new perspective of stability. For example, naively executing the parallel acceleration locally at clients would harm the local-update stability. Motivated by this, we then propose a novel accelerated yet stabilized FL algorithm (named FedANAG) based on the server- and client-level Nesterov accelerated gradient (NAG). In FedANAG, the global and local momenta are elaborately designed and alternatively updated, while the stability of local update is enhanced with help of the global momentum. We prove the convergence of FedANAG for strongly convex, general convex and non-convex settings. We then conduct evaluations on both the synthetic and real-world datasets to first validate our proposed local-update stability. The results further show that across various data heterogeneity and client participation ratios, FedANAG not only accelerates the global convergence by reducing the required number of communication rounds to a target accuracy, but converges to an eventually higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zert发布了新的文献求助10
19秒前
认真的奇异果完成签到 ,获得积分10
21秒前
xinxin完成签到,获得积分10
26秒前
华仔应助evermore采纳,获得10
29秒前
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得30
34秒前
39秒前
evermore完成签到,获得积分10
41秒前
兴尽晚回舟完成签到 ,获得积分10
42秒前
evermore发布了新的文献求助10
44秒前
风与沙的边缘完成签到,获得积分10
48秒前
56秒前
59秒前
Mingyue123发布了新的文献求助10
1分钟前
Mingyue123完成签到,获得积分10
1分钟前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
ywy发布了新的文献求助10
1分钟前
1分钟前
Blaseaka完成签到 ,获得积分0
1分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
顾矜应助xuan采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
乐乐应助Fishchips采纳,获得10
2分钟前
liuliu完成签到,获得积分20
2分钟前
脑洞疼应助Zert采纳,获得10
2分钟前
2分钟前
小山己几完成签到,获得积分10
3分钟前
眯眯眼的山柳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
1577发布了新的文献求助10
3分钟前
兴奋秋珊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346219
求助须知:如何正确求助?哪些是违规求助? 4480951
关于积分的说明 13947038
捐赠科研通 4378626
什么是DOI,文献DOI怎么找? 2405984
邀请新用户注册赠送积分活动 1398546
关于科研通互助平台的介绍 1371163