Foundation models in robotics: Applications, challenges, and the future

机器人学 基础(证据) 人工智能 计算机科学 工程类 机器人 政治学 法学
作者
Roya Firoozi,Johnathan Tucker,Stephen Tian,Anirudha Majumdar,Jiankai Sun,Weiyu Liu,Yuke Zhu,Shuran Song,Ashish Kapoor,Karol Hausman,Brian Ichter,Danny Driess,Jia-Jun Wu,Cewu Lu,Mac Schwager
出处
期刊:The International Journal of Robotics Research [SAGE]
被引量:6
标识
DOI:10.1177/02783649241281508
摘要

We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast, foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data. Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to decision-making and control. For example, large language models can generate code or provide common sense reasoning, while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification, and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception, decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy and provide opportunities and potential pathways for future advancements. The GitHub project corresponding to this paper can be found here: https://github.com/robotics-survey/Awesome-Robotics-Foundation-Models .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
研友_LOrQa8发布了新的文献求助10
3秒前
ocean发布了新的文献求助10
3秒前
ZhihaoYang完成签到,获得积分10
5秒前
7秒前
生动曼冬发布了新的文献求助20
7秒前
武雨珍发布了新的文献求助10
7秒前
Phoenix完成签到,获得积分10
8秒前
曾经二娘发布了新的文献求助10
8秒前
可爱的函函应助石狗西采纳,获得10
11秒前
12秒前
科研通AI2S应助北城无夏采纳,获得10
12秒前
xtt发布了新的文献求助10
12秒前
Owen应助努力哥采纳,获得30
12秒前
SSSSscoliosis完成签到,获得积分10
12秒前
12秒前
kekefefe完成签到,获得积分10
13秒前
研友_LOrQa8完成签到,获得积分20
14秒前
ocean完成签到,获得积分10
15秒前
嘟嘟完成签到 ,获得积分10
16秒前
zh123发布了新的文献求助10
17秒前
烟花应助陈皮采纳,获得10
19秒前
希望天下0贩的0应助JUZI采纳,获得10
23秒前
油菜花完成签到,获得积分10
24秒前
25秒前
26秒前
KYT发布了新的文献求助10
29秒前
乐乐应助111采纳,获得10
29秒前
zh123完成签到,获得积分10
29秒前
敬老院N号应助科研通管家采纳,获得20
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
烟花应助科研通管家采纳,获得10
30秒前
笨笨石头应助科研通管家采纳,获得10
30秒前
Bacian完成签到 ,获得积分10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
不配.应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155908
求助须知:如何正确求助?哪些是违规求助? 2807136
关于积分的说明 7871997
捐赠科研通 2465497
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905