Limiting the memory consumption of caching for detecting subproblem dominance in constraint problems

限制 优势(遗传学) 计算机科学 约束(计算机辅助设计) 消费(社会学) 数学优化 数学 社会学 工程类 社会科学 生物 几何学 生物化学 机械工程 基因
作者
Michel Medema,Luc Breeman,Alexander Lazovik
出处
期刊:Constraints - An International Journal [Springer Nature]
卷期号:29 (1-2): 152-191
标识
DOI:10.1007/s10601-024-09374-7
摘要

Abstract Solving constraint satisfaction problems often involves a large amount of redundant exploration stemming from the existence of subproblems whose information can be reused for other subproblems. Subproblem dominance is a general notion of reusability that arises when one subproblem imposes more constraints on the remaining part of the search than another subproblem and allows the search to reuse the solutions of the dominating subproblem for the dominated subproblem. The search can exploit subproblem dominance by storing the subproblems that have been explored in a cache and abandoning the current subproblem whenever the cache contains a subproblem that dominates it. While using caching makes it possible to solve problems where subproblem dominance arises orders of magnitude faster, storing all of these subproblems can require a substantial amount of memory, making it impractical in many cases. This paper analyses the dominance between different subproblems for various constraint problems, revealing that only a relatively small number of subproblems dominate other subproblems. Based on these findings, two types of strategies are proposed for reducing the number of subproblems stored in the cache: limiting the number of subproblems that can be stored in the cache and periodically cleaning up the cache. An experimental evaluation demonstrates that these strategies provide an effective instrument for reducing the memory consumption of caching, allowing it to be used on a larger scale. However, there is a trade-off between saving memory and reducing redundant exploration, as removing subproblems from the cache may prevent dominance from being detected for certain subproblems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
永远永远完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
合适的乐儿完成签到,获得积分10
3秒前
sswbzh应助风清扬采纳,获得50
4秒前
4秒前
4秒前
正念完成签到,获得积分10
5秒前
Orange应助心灵美的小伙采纳,获得10
5秒前
5秒前
5秒前
5秒前
寒水沉烟完成签到,获得积分10
5秒前
5秒前
充电宝应助九九采纳,获得10
6秒前
6秒前
怕黑寻双完成签到,获得积分10
6秒前
6秒前
6秒前
orixero应助王硕硕采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
llhh2024发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
csy完成签到,获得积分10
10秒前
脱锦涛发布了新的文献求助10
10秒前
曹小曹发布了新的文献求助10
10秒前
11秒前
呆萌发布了新的文献求助10
11秒前
小蘑菇应助遇晴采纳,获得10
12秒前
12秒前
天天快乐应助小狗采纳,获得10
12秒前
12秒前
白瑾发布了新的文献求助10
12秒前
12秒前
alex发布了新的文献求助10
13秒前
vigour发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894