Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis

基因 计算生物学 生物 线粒体 基因表达 基因表达谱 遗传学
作者
Yinteng Wu,Haifeng Hu,Tao Wang,Wenliang Guo,Shijian Zhao,Ruqiong Wei
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fimmu.2024.1414301
摘要

Purpose Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development. Materials and methods We acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes. Results In OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA. Conclusion SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小绵羊发布了新的文献求助10
刚刚
2秒前
3秒前
坚定的映寒完成签到 ,获得积分10
3秒前
mirrovo完成签到 ,获得积分10
3秒前
Chris完成签到 ,获得积分0
3秒前
3秒前
RenHP完成签到,获得积分10
5秒前
5秒前
楚小儿完成签到 ,获得积分10
6秒前
wangtubianou完成签到,获得积分20
6秒前
周瓦特发布了新的文献求助10
6秒前
Autor完成签到,获得积分10
7秒前
7秒前
ertredffg完成签到,获得积分10
7秒前
空域完成签到,获得积分10
8秒前
知北完成签到,获得积分10
9秒前
一枝杷枇发布了新的文献求助10
9秒前
木子完成签到,获得积分10
9秒前
llllzzh完成签到 ,获得积分10
11秒前
花花完成签到,获得积分10
11秒前
hhhhh发布了新的文献求助10
11秒前
小月Anna完成签到,获得积分10
11秒前
TinTin完成签到,获得积分10
12秒前
sherry完成签到 ,获得积分10
13秒前
向春山完成签到 ,获得积分20
13秒前
大气石头完成签到,获得积分10
13秒前
脑洞疼应助周瓦特采纳,获得10
13秒前
桃桃甜筒完成签到,获得积分10
13秒前
Jasper应助一枝杷枇采纳,获得10
14秒前
SciGPT应助那就来吧采纳,获得10
14秒前
龙仔子完成签到 ,获得积分10
15秒前
实验室同学完成签到,获得积分10
16秒前
cheng完成签到,获得积分10
16秒前
LXZ发布了新的文献求助10
17秒前
醒醒完成签到,获得积分10
17秒前
小赞完成签到,获得积分10
17秒前
Soundyxxa发布了新的文献求助10
18秒前
醉月完成签到 ,获得积分10
18秒前
小明完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769107
捐赠科研通 2440349
什么是DOI,文献DOI怎么找? 1297368
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792