A nomogram and heat map based on LASSO‐Cox regression for predicting the risk of early‐stage severe fever with thrombocytopenia syndrome patients developing into critical illness at 7‐day and 14‐day

列线图 医学 比例危险模型 置信区间 Lasso(编程语言) 内科学 阶段(地层学) 风险评估 重症监护医学 肿瘤科 计算机安全 计算机科学 生物 万维网 古生物学
作者
Hanwen Tong,Jun Wang,Naisheng Zhu,Haopeng Li,Yu Zhai,Binxia Shao,Huiying Li,Peng Xia,Yunfei Jiang,Chenxiao Jiang,Yun Liu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:96 (9)
标识
DOI:10.1002/jmv.29921
摘要

Severe fever with thrombocytopenia syndrome (SFTS) represents an emerging infectious disease characterized by a substantial mortality risk. Early identification of patients is crucial for effective risk assessment and timely interventions. In the present study, least absolute shrinkage and selection operator (LASSO)-Cox regression analysis was conducted to identify key risk factors associated with progression to critical illness at 7-day and 14-day. A nomogram was constructed and subsequently assessed for its predictive accuracy through evaluation and validation processes. The risk stratification of patients was performed using X-tile software. The performance of this risk stratification system was assessed using the Kaplan-Meier method. Additionally, a heat map was generated to visualize the results of these analyses. A total of 262 SFTS patients were included in this study, and four predictive factors were included in the nomogram, namely viral copies, aspartate aminotransferase (AST) level, C-reactive protein (CRP), and neurological symptoms. The AUCs for 7-day and 14-day were 0.802 [95% confidence interval (CI): 0.707-0.897] and 0.859 (95% CI: 0.794-0.925), respectively. The nomogram demonstrated good discrimination among low, moderate, and high-risk groups. The heat map effectively illustrated the relationships between risk groups and predictive factors, providing valuable insights with high predictive and practical significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waiting完成签到,获得积分10
1秒前
1秒前
浮光完成签到,获得积分10
1秒前
1秒前
amy完成签到,获得积分10
1秒前
1秒前
mosisa完成签到,获得积分10
2秒前
和谐皮卡丘完成签到,获得积分20
2秒前
等待的剑身完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI6应助早川木槿采纳,获得10
3秒前
故里完成签到,获得积分10
3秒前
黑白芋头完成签到,获得积分10
3秒前
二尖瓣后叶完成签到,获得积分10
3秒前
弘一完成签到,获得积分10
3秒前
一米阳光发布了新的文献求助10
3秒前
签儿儿儿完成签到 ,获得积分10
3秒前
最好是完成签到,获得积分10
4秒前
4秒前
4秒前
汉桑波欸完成签到,获得积分10
4秒前
粗暴的达发布了新的文献求助10
5秒前
热心的薯片完成签到,获得积分10
5秒前
大好人完成签到 ,获得积分10
5秒前
犹豫酸奶发布了新的文献求助10
6秒前
6秒前
张一凡发布了新的文献求助10
6秒前
聪明新筠完成签到,获得积分10
6秒前
wjw完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
汉堡包应助wuyoung采纳,获得10
7秒前
牛牛完成签到,获得积分10
7秒前
黑白芋头发布了新的文献求助10
7秒前
哇塞爹完成签到,获得积分10
7秒前
老实盼海发布了新的文献求助10
7秒前
冷酷含羞草完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005