A nomogram and heat map based on LASSO‐Cox regression for predicting the risk of early‐stage severe fever with thrombocytopenia syndrome patients developing into critical illness at 7‐day and 14‐day

列线图 医学 比例危险模型 置信区间 Lasso(编程语言) 内科学 阶段(地层学) 风险评估 重症监护医学 肿瘤科 计算机安全 计算机科学 生物 万维网 古生物学
作者
Hanwen Tong,Jun Wang,Naisheng Zhu,Haopeng Li,Yu Zhai,Binxia Shao,Huiying Li,Peng Xia,Yunfei Jiang,Chenxiao Jiang,Yun Liu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:96 (9)
标识
DOI:10.1002/jmv.29921
摘要

Severe fever with thrombocytopenia syndrome (SFTS) represents an emerging infectious disease characterized by a substantial mortality risk. Early identification of patients is crucial for effective risk assessment and timely interventions. In the present study, least absolute shrinkage and selection operator (LASSO)-Cox regression analysis was conducted to identify key risk factors associated with progression to critical illness at 7-day and 14-day. A nomogram was constructed and subsequently assessed for its predictive accuracy through evaluation and validation processes. The risk stratification of patients was performed using X-tile software. The performance of this risk stratification system was assessed using the Kaplan-Meier method. Additionally, a heat map was generated to visualize the results of these analyses. A total of 262 SFTS patients were included in this study, and four predictive factors were included in the nomogram, namely viral copies, aspartate aminotransferase (AST) level, C-reactive protein (CRP), and neurological symptoms. The AUCs for 7-day and 14-day were 0.802 [95% confidence interval (CI): 0.707-0.897] and 0.859 (95% CI: 0.794-0.925), respectively. The nomogram demonstrated good discrimination among low, moderate, and high-risk groups. The heat map effectively illustrated the relationships between risk groups and predictive factors, providing valuable insights with high predictive and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
李健应助LW采纳,获得10
2秒前
贾学冲发布了新的文献求助10
2秒前
3秒前
3秒前
烟花应助细腻天德采纳,获得30
4秒前
5秒前
不摇头的向日葵完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助song采纳,获得10
5秒前
深情安青应助王可乐采纳,获得10
6秒前
月乐完成签到,获得积分10
7秒前
刻苦大门完成签到 ,获得积分10
8秒前
沉默羔羊完成签到,获得积分10
8秒前
Sang发布了新的文献求助10
8秒前
happy发布了新的文献求助10
8秒前
虚幻唯雪关注了科研通微信公众号
9秒前
9秒前
lmgj发布了新的文献求助10
10秒前
manji发布了新的文献求助10
11秒前
丁一发布了新的文献求助10
11秒前
11秒前
smottom应助Wynne采纳,获得10
11秒前
11秒前
JamesPei应助吃肉璇璇采纳,获得10
13秒前
13秒前
旺仔发布了新的文献求助10
13秒前
15秒前
丫丫发布了新的文献求助10
15秒前
大个应助退堂鼓艺术家采纳,获得10
15秒前
15秒前
张云志发布了新的文献求助10
16秒前
科研通AI2S应助晚上吃什么采纳,获得10
17秒前
学术牛马发布了新的文献求助10
17秒前
17秒前
17秒前
zz发布了新的文献求助30
17秒前
拼搏迎梦完成签到,获得积分10
17秒前
科研通AI6.1应助贾学冲采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300